November 23, 1995
Similar papers 2
August 18, 2000
The boundary effects on the current-voltage characteristics in two-dimensional arrays of resistively shunted Josephson junctions are examined. In particular, we consider both the conventional boundary conditions (CBC) and the fluctuating twist boundary conditions (FTBC), and make comparison of the obtained results. It is observed that the CBC, which have been widely adopted in existing simulations, may give a problem in scaling, arising from rather large boundary effects; the...
February 21, 2009
In a recent paper, Filatrella et al. [Phys. Rev. B 75, 54510 (2007)] report results of numerical calculations of energy barriers for flux quanta propagation in two-dimensional arrays of Josephson junctions with finite self and mutual inductances. To avoid complex numerical calculations, they use an approximated inductance model to address the effects of the mutual couplings. Using a full inductance matrix model, we show that this approximated model cannot be used to calculate...
October 1, 2010
We investigate the Josephson transport through a ferromagnetic oxide film, e.g., La$_2$BaCuO$_5$, theoretically. Using the recursive Green's function technique, we found the formation of a pi-junction in such systems. Moreover the 0-pi phase transition is induced by increasing the temperature. Such ferromagnetic-oxide based Josephson junctions may become an element in the architecture of future quantum computers.
June 3, 1997
Low-capacitance Josephson junction arrays in the parameter range where single charges can be controlled are suggested as possible physical realizations of the elements which have been considered in the context of quantum computers. We discuss single and multiple quantum bit systems. The systems are controlled by applied gate voltages, which also allow the necessary manipulation of the quantum states. We estimate that the phase coherence time is sufficiently long for experimen...
March 28, 1996
We present numerical simulations of the dynamics of two-dimensional Josephson junction arrays to study the mechanism of mutual phase locking. We show that in the presence of an external magnetic field two mechanisms are playing a role in phase locking: feedback through the external load and internal coupling between rows due to microwave currents induced by the field. We have found the parameter values (junction capacitance, cell loop inductance, impedance of the external loa...
July 7, 1999
We present a theoretical study on the dynamical properties of three-dimensional arrays of Josephson junctions. Our results indicate that such superconducting networks represent highly sensitive 3D-SQUIDs having some major advantages in comparison with conventional planar SQUIDs. The voltage response function of 3D-SQUIDs is directly related to the vector-character of external electromagnetic fields. The theory developed here allows the three-dimensional reconstruction of a de...
June 30, 1998
We consider arrays of Josephson junctions as well as single junctions in both the classical and quantum-mechanical regimes, and examine the generalized (frequency-dependent) resistance, which describes the dynamic responses of such Josephson-junction systems to external currents. It is shown that the generalized resistance and the power spectrum of voltage fluctuations are related via the fluctuation-dissipation theorem. Implications of the obtained relations are also discuss...
July 19, 2020
We perform extensive analysis of graphene Josephson junctions embedded in microwave circuits. By comparing a diffusive junction at 15 mK with a ballistic one at 15 mK and 1 K, we are able to reconstruct the current-phase relation.
August 14, 2024
We report relaxation oscillations in a one-dimensional array of Josephson junctions. The oscillations are circuit-dual to those ordinarily observed in single junctions. The dual circuit quantitatively accounts for temporal dynamics of the array, including the dependence on biasing conditions. Injection locking the oscillations results in well-developed current plateaux. A thermal model explains the relaxation step of the oscillations.
January 3, 2025
Josephson junctions, as pivotal components of modern technologies such as superconducting quantum computing, owe their prominence to their unique nonlinear properties at low temperatures. Despite their extensive use in static configurations, the study of dynamic Josephson junctions, particularly under space-time modulation, remains largely unexplored. This study investigates the interaction and transmission of electromagnetic waves through arrays of space-time-modulated Josep...