April 23, 1997
Similar papers 2
March 29, 2021
The structural, electronic, elastic and optical properties of tetragonal (P4mm) phase of Pb0.5Sn0.5TiO3 (PSTO) and Pb0.5Sn0.5Ti0.5(Zr0.5)O3 (PSTZO) are examined by first-principles calculations based on the density functional theory (DFT) using the pseudo-potential plane wave (PP-PW) scheme in the frame of generalized gradient approximation (GGA). We have calculated the ground state properties such as equlibrium lattice constants, volume, bulk modulus and its pressure derivat...
January 22, 2005
The methods of density-functional perturbation theory may be used to calculate various physical response properties of insulating crystals including elastic, dielectric, Born charge, and piezoelectric tensors. These and other important tensors may be defined as second derivatives of the total energy with respect to atomic-displacement, electric-field, or strain perturbations, or as mixed derivatives with respect to two of these perturbations. The resulting tensor quantities t...
March 13, 2008
Temperature dependent structural changes in a nearly pure monoclinic phase composition (x=0.525) of Pb(Zr_xTi_1-x)O_3 (PZT) have been investigated using Rietveld analysis of high-resolution synchrotron powder x-ray diffraction data and correlated with changes in the dielectric constant and planar electromechanical coupling coefficient. Our results show that the intrinsic piezoelectric response of the tetragonal phase of PZT is higher than that of the monoclinic phase. It is a...
June 28, 2011
In recent years, methods have been developed that allow first-principles electronic-structure calculations to be carried out under conditions of fixed electric field. For some purposes, however, it is more convenient to work at fixed electric displacement field. Initial implementations of the fixed-displacement-field approach have been limited to constraining the field along one spatial dimension only. Here, we generalize this approach to treat the full three-dimensional disp...
June 6, 2005
We find an unexpected tetragonal-to-monoclinic-to-rhombohedral-to-cubic phase transition sequence induced by pressure, and a morphotropic phase boundary in a pure compound using first-principles calculations. Huge dielectric and piezoelectric coupling constants occur in the transition regions, comparable to those observed in the new complex single-crystal solid-solution piezoelectrics such as Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$-PbTiO$_{3}$, which are expected to revolutionize ele...
May 19, 1995
An effective Hamiltonian for the ferroelectric transition in $PbTiO_3$ is constructed from first-principles density-functional-theory total-energy and linear-response calculations through the use of a localized, symmetrized basis set of ``lattice Wannier functions.'' Preliminary results of Monte Carlo simulations for this system show a first-order cubic-tetragonal transition at 660 K. The involvement of the Pb atom in the lattice instability and the coupling of local distorti...
February 29, 2024
Computing the temperature and stress dependence of the full elastic constant tensor from first-principles in non-cubic materials remains a challenging problem. Here we circumvent the aforementioned challenge via the generalized quasiharmonic approximation in conjunction with the irreducible derivative approach for computing strain dependent phonons using finite difference, explicitly including dipole-quadrupole contributions. We showcase this approach in ferroelectric PbTiO$_...
February 13, 2003
We report a first-principles study of a class of (BiScO3)_{1-x}-(PbTiO3)_x (BS-PT) alloys recently proposed by Eitel et al. as promising materials for piezoelectric actuator applications. We show that (i) BS-PT displays very large structural distortions and polarizations at the morphotropic phase boundary (MPB) (we obtain a c/a of ~1.05-1.08 and P_tet of ~1.1 C/m^2); (ii) the ferroelectric and piezoelectric properties of BS-PT are dominated by the onset of hybridization betwe...
December 17, 2013
The properties of ferroelectric materials, such as lead zirconate titanate (PZT), are heavily influenced by the interaction of defects with domain walls. These defects are either intrinsic, or are induced by the addition of dopants. We study here PbTiO$_3$ (the end member of a key family of solid solutions) in the presence of acceptor (Fe) and donor (Nb) dopants, and the interactions of the different defects and defect associates with the domain walls. For the case iron accep...
November 7, 2007
Piezoelectric PZT solid solutions were studied as a function of pressure and temperature. Moderate pressure is found to induce phase transitions to monoclinic phases (Cm,Cc) for Ti-rich PZT, which are the same ferroelectric phases responsible for the high piezoelectric properties of the MPB. The following transformation sequence P4mm -> Cm -> Cc -> F1 -> F-1 was identified upon increasing pressure. Compression behaviour is dominated by: (1) a rotation and a reduction of the s...