September 12, 1997
Similar papers 3
April 14, 1994
A review is given of the shot-noise properties of metallic, diffusive conductors. The shot noise is one third of the Poisson noise, due to the bimodal distribution of transmission eigenvalues. The same result can be obtained from a semiclassical calculation. Starting from Oseledec's theorem it is shown that the bimodal distribution is required by Ohm's law.
November 22, 1999
In order to specify a nonequilibrium steady state of a quantum wire (QWR), one must connect reservoirs to it. Since reservoirs should be large 2d or 3d systems, the total system is a large and inhomogeneous 2d or 3d system, in which e-e interactions have the same strength in all regions. However, most theories of interacting electrons in QWR considered simplified 1d models, in which reservoirs are absent or replaced with noninteracting 1d leads. We first discuss fundamental p...
April 22, 2012
Models of nonequilibrium quantum transport underpin all modern electronic devices, from the largest scales to the smallest. Past simplifications such as coarse graining and bulk self-averaging served well to understand electronic materials. Such particular notions become inapplicable at mesoscopic dimensions, edging towards the truly quantum regime. Nevertheless a unifying thread continues to run through transport physics, animating the design of small-scale electronic techno...
September 7, 2004
We study fluctuations of spin-polarized currents in a three-terminal spin-valve system consisting of a diffusive normal metal wire connected by tunnel junctions to three ferromagnetic terminals. Based on a spin-dependent Boltzmann-Langevin equation, we develop a semiclassical theory of charge and spin currents and the correlations of the currents fluctuations. In the three terminal system, we show that current fluctuations are strongly affected by the spin-flip scattering in ...
August 29, 2002
A generalized Landauer formula, derived with the methods due to Keldysh, and Baym and Kadanoff, is gaining widespread use in the modeling of transport in a large number of different mesoscopic systems. We review some of the recent developments, including transport in semiconductor superlattices, calculation of noise, and nanoelectromechanical systems.
June 21, 2002
A quantum mechanical theory is developed for the statistics of momentum transferred to the lattice by conduction electrons. Results for the electromechanical noise power in the semiclassical diffusive transport regime agree with a recent theory based on the Boltzmann-Langevin equation. All moments of the transferred momentum are calculated for a single-channel conductor with a localized scatterer, and compared with the known statistics of transmitted charge.
October 10, 2022
The scattering picture of electron transport in mesoscopic conductors shows that fluctuations of the current reveal additional information on the scattering mechanism not available through the conductance alone. The electronic fluctuations are coupled to the electromagnetic field and a junction at finite bias or temperature will emit radiation. The nonsymmetrized current-current correlators characterize the emission and absorption spectrum. Recent interest is focused on the s...
January 19, 2006
In the ballistic limit, the Landauer conductance steps of a mesoscopic quantum wire have been explained by coherent and dissipationless transmission of individual electrons across a one-dimensional barrier. This leaves untouched the central issue of conduction: a quantum wire, albeit ballistic, has finite resistance and so must dissipate energy. Exactly HOW does the quantum wire shed its excess electrical energy? We show that the answer is provided, uniquely, by many-body qua...
February 18, 2015
We study non-equilibrium steady state transport in scale invariant quantum junctions with focus on the particle and heat fluctuations captured by the two-point current correlation functions. We show that the non-linear behavior of the particle current affects both the particle and heat noise. The existence of domains of enhancement and reduction of the noise power with respect to the linear regime are observed. The impact of the statistics is explored. We demonstrate that in ...
March 27, 1998
Using the 'drift-diffusion-Langevin' equation, we have quantitatively analyzed the effects of electron energy relaxation via their interaction with phonons, generally in presence of electron-electron interaction, on shot noise in diffusive conductors. We have found that the noise power $ S_I(\omega )$ (both at low and high observation frequencies $\omega $) drops to half of its 'mesoscopic' value only at $\beta \gtrsim 100,$ where $\beta $ is the ratio of the sample length $L...