April 28, 1998
We consider a stochastic model of investment on an asset of a stock market for a prudent investor. She decides to buy permanent goods with a fraction $\a$ of the maximum amount of money owned in her life in order that her economic level never decreases. The optimal strategy is obtained by maximizing the exponential growth rate for a fixed $\a$. We derive analytical expressions for the typical exponential growth rate of the capital and its fluctuations by solving an one-dimens...
May 29, 2023
The aim of this short note is to present a solution to the discrete time exponential utility maximization problem in a case where the underlying asset has a multivariate normal distribution. In addition to the usual setting considered in Mathematical Finance, we also consider an investor who is informed about the risky asset's price changes with a delay. Our method of solution is based on the theory developed in [4] and guessing the optimal portfolio.
January 23, 1998
We propose and study a simple model of dynamical redistribution of capital in a diversified portfolio. We consider a hypothetical situation of a portfolio composed of N uncorrelated stocks. Each stock price follows a multiplicative random walk with identical drift and dispersion. The rules of our model naturally give rise to power law tails in the distribution of capital fractions invested in different stocks. The exponent of this scale free distribution is calculated in both...
June 12, 2009
It is widely recognized that when classical optimal strategies are applied with parameters estimated from data, the resulting portfolio weights are remarkably volatile and unstable over time. The predominant explanation for this is the difficulty of estimating expected returns accurately. In this paper, we modify the $n$ stock Black--Scholes model by introducing a new parametrization of the drift rates. We solve Markowitz' continuous time portfolio problem in this framework. ...
April 21, 2014
In portfolio optimization problems, the minimum expected investment risk is not always smaller than the expected minimal investment risk. That is, using a well-known approach from operations research, it is possible to derive a strategy that minimizes the expected investment risk, but this strategy does not always result in the best rate of return on assets. Prior to making investment decisions, it is important to an investor to know the potential minimal investment risk (or ...
October 16, 2005
We aim to construct a general framework for portfolio management in continuous time, encompassing both stocks and bonds. In these lecture notes we give an overview of the state of the art of optimal bond portfolios and we re-visit main results and mathematical constructions introduced in our previous publications (Ann. Appl. Probab. \textbf{15}, 1260--1305 (2005) and Fin. Stoch. {\bf9}, 429--452 (2005)). A solution of the optimal bond portfolio problem is given for general ...
January 15, 2015
In a discrete time stochastic model of a pension investment funds market Gajek and Kaluszka(2000a) have provided a definition of the average rate of return which satisfies a set of economic correctnes postulates. In this paper the average rate of return is defined for a continuous time stochastic model of the market. The prices of assets are modeled by the multidimensional geometrical Brownian motion. A martingale property of the average rate of return is proven.
December 29, 2021
This paper studies a mean-risk portfolio choice problem for log-returns in a continuous-time, complete market. This is a growth-optimal problem with risk control. The risk of log-returns is measured by weighted Value-at-Risk (WVaR), which is a generalization of Value-at-Risk (VaR) and Expected Shortfall (ES). We characterize the optimal terminal wealth up to the concave envelope of a certain function, and obtain analytical expressions for the optimal wealth and portfolio poli...
March 15, 2023
We consider the classical multi-asset Merton investment problem under drift uncertainty, i.e. the asset price dynamics are given by geometric Brownian motions with constant but unknown drift coefficients. The investor assumes a prior drift distribution and is able to learn by observing the asset prize realizations during the investment horizon. While the solution of an expected utility maximizing investor with constant relative risk aversion (CRRA) is well known, we consider ...
March 29, 2021
This paper presents an optimal strategy for portfolio liquidation under discrete time conditions. We assume that N risky assets held will be liquidated according to the same time interval and order quantity, and the basic price processes of assets are generated by an N-dimensional independent standard Brownian motion. The permanent impact generated by an asset in the portfolio during the liquidation will affect all assets, and the temporary impact generated by one asset will ...