November 13, 1998
Similar papers 4
November 14, 2003
We present an experimental and theoretical investigation of coherent current transport in wide ballistic superconductor-two dimensional electron gas-superconductor junctions. It is found experimentally that upon increasing the junction length, the subharmonic gap structure in the current-voltage characteristics is shifted to lower voltages, and the excess current at voltages much larger than the superconducting gap decreases. Applying a theory of coherent multiple Andreev ref...
September 3, 2012
The dc Josephson current through a long SNS junction receives contributions from both Andreev bound states localized in the normal region as well as from scattering states incoming from the superconducting leads. We show that in the limit of a long junction, this current, at low temperatures, can be expressed entirely in terms of properties of the Andreev bound states at the Fermi energy: the normal and Andreev reflection amplitudes at the left-hand and at the right-hand S-N ...
March 5, 1998
The manuscript presents an overview of recent developments in theory of multiple Andreev reflections in Josephson junctions with arbitrary transparency and arbitrary quasiparticle dispersion in the electrodes.
November 20, 1998
We study theoretically the ac Josephson effect in voltage biased planar junctions of d-wave superconductors. For some orientations of the superconductors a current peak is found at finite voltage in the current-voltage characteristics. We pick out the relevant physical processes and write down an analytical formula for the current which clearly shows how the midgap state acts as a resonance and produces the peak. We present a possible explanation for the zero-bias conductance...
November 4, 1997
We express the low-frequency shot noise in a disordered normal-metal - superconductor (NS) junction at finite (subgap) voltage in terms of the normal scattering amplitudes and the Andreev reflection amplitude. In the multichannel limit, the conductance exhibits resonances which are accompanied by an enhancement of the (differential) shot noise. In the study of multichannel single and double barrier junctions we discuss the noise properties of coherent transport at low versus ...
July 15, 2003
A conceptual consideration is given to a zero-energy state (ZES) at the surface of unconventional superconductors. The reflection coefficients in normal-metal / superconductor (NS) junctions are calculated based on a phenomenological description of the reflection processes of a quasiparticle. The phenomenological theory reveals the importance of the sign change in the pair potential for the formation of the ZES. The ZES is observed as the zero-bias conductance peak (ZBCP) in ...
October 23, 2003
The transport properties of a quantum dot coupled to superconducting leads are analyzed. It is shown that the quasiparticle current in the Kondo regime is determined by the non-equilibrium dynamics of subgap states (Andreev states) under an applied voltage. The current at low bias is suppressed exponentially for decreasing Kondo temperature in agreement with recent experiments. We also predict novel interference effects due to multiple Landau-Zener transitions between Andreev...
August 4, 2003
We derive the full distribution of transmitted particles through a superconducting point contact of arbitrary transparency under voltage bias. The charge transport is dominated by multiple Andreev reflections. The counting statistics is a multinomial distribution of processes, in which multiple charges ne (n=1,2,3,...) are transferred through the contact. For zero temperature we obtain analytical expressions for the probabilities of the multiple Andreev reflections. The curre...
June 11, 2018
We present a theoretical study of electronic transport in a hybrid junction consisting of an excitonic insulator sandwiched between a normal and a superconducting electrode. The normal region is described as a two-band semimetal and the superconducting lead as a two-band superconductor. In the excitonic insulator region, the coupling between carriers in the two bands leads to an excitonic condensate and a gap $\Gamma$ in the quasiparticle spectrum. We identify four different ...
July 13, 1998
We investigate a normal metal -- superconductor (point) contact in the limit where the number of conducting channels in the metallic wire is reduced to few channels. As the effective Fermi energy drops below the gap energy, a conducting band with a width twice the Fermi energy is formed. Depending on the mode of operation, the conduction band can be further squeezed, leading to various non-linear effects in the current-voltage characteristics such as current saturation, a N-s...