January 26, 1999
We use a path integral approach for solving the stochastic equations underlying the financial markets, and we show the equivalence between the path integral and the usual SDE and PDE methods. We analyze both the one-dimensional and the multi-dimensional cases, with point dependent drift and volatility, and describe a covariant formulation which allows general changes of variables. Finally we apply the method to some economic models with analytical solutions. In particular, we evaluate the expectation value of functionals which correspond to quantities of financial interest.
Similar papers 1
June 5, 2008
We present a path integral method to derive closed-form solutions for option prices in a stochastic volatility model. The method is explained in detail for the pricing of a plain vanilla option. The flexibility of our approach is demonstrated by extending the realm of closed-form option price formulas to the case where both the volatility and interest rates are stochastic. This flexibility is promising for the treatment of exotic options. Our new analytical formulas are teste...
February 8, 2002
An efficient computational algorithm to price financial derivatives is presented. It is based on a path integral formulation of the pricing problem. It is shown how the path integral approach can be worked out in order to obtain fast and accurate predictions for the value of a large class of options, including those with path-dependent and early exercise features. As examples, the application of the method to European and American options in the Black-Scholes model is illustr...
January 26, 1999
We discuss two numerical methods, based on a path integral approach described in a previous paper (I), for solving the stochastic equations underlying the financial markets: the Monte Carlo approach, and the Green function deterministic numerical method. Then, we apply the latter to some specific financial problems. In particular, we consider the pricing of a European option, a zero-coupon bond, a caplet, an American option, and a Bermudan swaption.
August 22, 1997
The Black-Scholes formula for pricing options on stocks and other securities has been generalized by Merton and Garman to the case when stock volatility is stochastic. The derivation of the price of a security derivative with stochastic volatility is reviewed starting from the first principles of finance. The equation of Merton and Garman is then recast using the path integration technique of theoretical physics. The price of the stock option is shown to be the analogue of th...
August 4, 2024
We generalize a semi-classical path integral approach originally introduced by Giachetti and Tognetti [Phys. Rev. Lett. 55, 912 (1985)] and Feynman and Kleinert [Phys. Rev. A 34, 5080 (1986)] to time-dependent Hamiltonians, thus extending the scope of the method to the pricing of financial derivatives. We illustrate the accuracy of the approach by presenting results for the well-known, but analytically intractable, Black-Karasinski model for the dynamics of interest rates. Th...
May 19, 2000
In this paper I develop a new computational method for pricing path dependent options. Using the path integral representation of the option price, I show that in general it is possible to perform analytically a partial averaging over the underlying risk-neutral diffusion process. This result greatly eases the computational burden placed on the subsequent numerical evaluation. For short-medium term options it leads to a general approximation formula that only requires the eval...
December 18, 1998
We present a new approach for the pricing of interest rate derivatives which allows a direct computation of option premiums without deriving a (Black-Scholes type) partial differential equation and without explicitly solving the stochastic process for the underlying variable. The approach is tested by rederiving the prices of a zero bond and a zero bond option for a short rate environment which is governed by Vasicek dynamics. Furthermore, a generalization of the method to ge...
January 26, 2020
In this note we review the basic mathematical ideas used in finance in the language of modern physics. We focus on discrete time formalism, derive path integral and Green's function formulas for pricing. We also discuss various risk mitigation methods.
November 13, 2002
Recent progress in the development of efficient computational algorithms to price financial derivatives is summarized. A first algorithm is based on a path integral approach to option pricing, while a second algorithm makes use of a neural network parameterization of option prices. The accuracy of the two methods is established from comparisons with the results of the standard procedures used in quantitative finance.
October 7, 2014
We give a pragmatic/pedagogical discussion of using Euclidean path integral in asset pricing. We then illustrate the path integral approach on short-rate models. By understanding the change of path integral measure in the Vasicek/Hull-White model, we can apply the same techniques to "less-tractable" models such as the Black-Karasinski model. We give explicit formulas for computing the bond pricing function in such models in the analog of quantum mechanical "semiclassical" app...