January 26, 1999
Similar papers 4
March 14, 2007
It is well known that the Black-Scholes-Merton model suffers from several deficiencies. Jump-diffusion and Levy models have been widely used to partially alleviate some of the biases inherent in this classical model. Unfortunately, the resulting pricing problem requires solving a more difficult partial-integro differential equation (PIDE) and although several approaches for solving the PIDE have been suggested in the literature, none are entirely satisfactory. All treat the i...
May 8, 2020
In this paper we derive a efficient Monte Carlo approximation for the price of path-dependent derivatives under the multiscale stochastic volatility models of Fouque \textit{et al}. Using the formulation of this pricing problem under the functional It\^o calculus framework and making use of Greek formulas from Malliavin calculus, we derive a representation for the first-order approximation of the price of path-dependent derivatives in the form $\mathbb{E}[\mbox{payoff} \times...
August 13, 2001
The paper develops a calculus for a class of real-valued functions having a quadratic variation. The main result is a solution of the representation problem for a class of evolutions having a quadratic variation. The result is applied to build up an asset pricing model. Also in the paper there are some results concerning an extension of the class of all semimartingales.
August 10, 2022
In recent years dynamical systems (of deterministic and stochastic nature), describing many models in mathematics, physics, engineering and finances, become more and more complex. Numerical analysis narrowed only to deterministic algorithms seems to be insufficient for such systems, since, for example, curse of dimensionality affects deterministic methods. Therefore, we can observe increasing popularity of Monte Carlo algorithms and, closely related with them, stochastic simu...
September 5, 2018
We introduce a model for the dynamics of stock prices based on a non quadratic path integral. The model is a generalization of Ilinski's path integral model, more precisely we choose a different action, which can be tuned to different time scales. The result is a model with a very small number of parameters that provides very good fits of some stock prices and indices fluctuations.
November 21, 2002
The pricing of options, warrants and other derivative securities is one of the great success of financial economics. These financial products can be modeled and simulated using quantum mechanical instruments based on a Hamiltonian formulation. We show here some applications of these methods for various potentials, which we have simulated via lattice Langevin and Monte Carlo algorithms, to the pricing of options. We focus on barrier or path dependent options, showing in some d...
June 14, 1999
Non-equilibrium phenomena occur not only in physical world, but also in finance. In this work, stochastic relaxational dynamics (together with path integrals) is applied to option pricing theory. A recently proposed model (by Ilinski et al.) considers fluctuations around this equilibrium state by introducing a relaxational dynamics with random noise for intermediate deviations called ``virtual'' arbitrage returns. In this work, the model is incorporated within a martingale pr...
November 20, 2024
In this paper, we study the computation of sensitivities with respect to spot of path dependent financial derivatives by means of path weighting. We propose explicit path weighting formula and variance reduction adjustment in order to address the large variance happening when the first simulation time step is small. We also propose a covariance inflation technique to addresses the degenerator case when the covariance matrix is singular. The stock dynamics we consider is given...
May 24, 2018
The goal of this paper is to define stochastic integrals and to solve stochastic differential equations for typical paths taking values in a possibly infinite dimensional separable Hilbert space without imposing any probabilistic structure. In the spirit of [33, 37] and motivated by the pricing duality result obtained in [4] we introduce an outer measure as a variant of the pathwise minimal superhedging price where agents are allowed to trade not only in $\omega$ but also in ...
September 17, 2008
We reconsider the problem of optimal time to sell a stock studied recently by Shiryaev, Xu and Zhou using path integral methods. This method allows us to confirm the results obtained by these authors and extend them to a parameter region inaccessible to the method used by Shiryaev et. al. We also obtain the full distribution of the time t_m at which the maximum of the price is reached for arbitrary values of the drift.