August 8, 2003
We present a Hartree-Fock-Bogoliubov (HFB) theoretical treatment of the two-dimensional trapped Bose gas and indicate how semiclassical approximations to this and other formalisms have lead to confusion. We numerically obtain results for the fully quantum mechanical HFB theory within the Popov approximation and show that the presence of the trap stabilizes the condensate against long wavelength fluctuations. These results are used to show where phase fluctuations lead to the ...
June 23, 2015
We present a theoretical study of the ground state of the BCS-BEC crossover in dilute two-dimensional Fermi gases. While the mean-field theory provides a simple and analytical equation of state, the pressure is equal to that of a noninteracting Fermi gas in the entire BCS-BEC crossover, which is not consistent with the features of a weakly interacting Bose condensate in the BEC limit and a weakly interacting Fermi liquid in the BCS limit. The inadequacy of the 2D mean-field t...
March 21, 2000
The theory of Bose-Einstein condensation in a two-dimensional(2D) harmonic trap is developed from 2D Gross-Pitaevskii equation. The 2D interaction strength is obtained from a 2D collision theory. We show the realization of 2D condensation of trapped Bose atoms directly by obtaining the stable solutions for the condensate wave function from the 2D Gross-Pitaevskii equation. We calculate the ground-state energy of the 2D system, and also the wave function of the 2D vortex sta...
September 26, 1996
I review recent theoretical treatments of a dilute interacting condensed Bose gas in a trap. Bogoliubov's classic results for a uniform condensate are generalized to include the effect of a trap, using the Gross-Pitaevskii formalism (for the condensate) and the Bogoliubov equations (for the linearized small-amplitude excitations of the condensate). Several recent theoretical studies are discussed along with some open questions.
April 20, 2010
We investigate the combined effects of weak disorder and a two-dimensional (2D) optical lattice on the collective excitations of a harmonically trapped Bose-Einstein condensate (BEC) at zero temperature. Accordingly, we generalize the hydrodynamic equations of superfluid for a weakly interacting Bose gas in a 2D optical lattice to include the effects of weak disorder. Our analytical results for the collective frequencies beyond the mean-field approximation reveal the peculiar...
August 2, 2000
In this paper we study the properties of Bose-Einstein condensates in shallow traps. We discuss the case of a Gaussian potential, but many of our results apply also to the traps having a small quadratic anharmonicity. We show the errors introduced when a Gaussian potential is approximated with a parabolic potential, these errors can be quite large for realistic optical trap parameter values. We study the behavior of the condensate fraction as a function of trap depth and temp...
January 22, 2006
Three distinct types of behaviour have recently been identified in the two-dimensional trapped bosonic gas, namely; a phase coherent Bose-Einstein condensate (BEC), a Berezinskii-Kosterlitz-Thouless-type (BKT) superfluid and normal gas phases in order of increasing temperature. In the BKT phase the system favours the formation of vortex-antivortex pairs, since the free energy is lowered by this topological defect. We provide a simple estimate of the free energy of a dilute Bo...
January 9, 2015
We study the critical point for the emergence of coherence in a harmonically trapped two-dimensional Bose gas with tuneable interactions. Over a wide range of interaction strengths we find excellent agreement with the classical-field predictions for the critical point of the Berezinskii-Kosterlitz-Thouless (BKT) superfluid transition. This allows us to quantitatively show, without any free parameters, that the interaction-driven BKT transition smoothly converges onto the pure...
November 18, 1997
The low-energy fluctuations of a trapped, interacting quasi one-dimensional Bose gas are studied. Our considerations apply to experiments with highly anisotropic traps. We show that under suitable experimental conditions the system can be described as a Luttinger liquid. This implies that the correlation function of the bosons decays algebraically preventing Bose-Einstein condensation. At significantly lower temperatures a finite size gap destroys the Luttinger liquid picture...
December 23, 1996
We investigate the possibilities of distinguishing the mean-field and fluctuation effects on the critical temperature of a trapped Bose gas with repulsive interatomic interactions. Since in a direct measurement of the critical temperature as a function of the number of trapped atoms these effects are small compared to the ideal gas results, we propose to observe Bose-Einstein condensation by adiabatically ramping down the trapping frequency. Moreover, analyzing this adiabatic...