December 22, 1999
Similar papers 4
September 25, 2018
Periodically poled lithium niobate (PPLN) waveguide is a powerful platform for efficient wavelength conversion. Conventional PPLN converters however typically require long device lengths and high pump powers due to the limited nonlinear interaction strength. Here we use a nanostructured PPLN waveguides to demonstrate an ultrahigh normalized efficiency of 2600%/W-cm$^2$ for second-harmonic generation of 1.5-$\mu$m radiation, more than 20 times higher than that in state-of-the-...
November 24, 2023
A double-ridge waveguide is designed for efficient and robust second-harmonic generation (SHG) using the thin-film lithium-niobate-on-insulator (LNOI) platform. Perfect phase matching (PhM) is achieved between the fundamental waveguide mode at 1550 nm and a higher-order mode at the second harmonic. The fabrication tolerances of the PhM condition are simulated using a finite-difference method mode solver, and conversion efficiencies as high as 3.92/W are obtained for a 1-cm lo...
December 20, 2024
Achieving high conversion efficiencies in second-order nonlinear optical processes is a key challenge in integrated photonics for both classical and quantum applications. This paper presents the first demonstration of Transverse Orientation-Patterned gallium phosphide (TOP-GaP) waveguides showing high-efficiency second harmonic generation. In such devices, first order modal phase matching is unlocked and optimized through the inversion of the nonlinear susceptibility along th...
August 25, 2021
Second harmonic generation (SHG), as one of the most significant \c{hi}(2) nonlinear optical processes, plays crucial roles in a broad variety of optical and photonic applications. Designing various delicate schemes to achieve highly efficient SHG has become a long standing and challenging topic in field of nonlinear optics. Despite numerous success on SHG based on birefringent phase matching and quasi-phase matching, so far, modal phase matching (MPM) for SHG in tightly ligh...
September 21, 2004
We report on the design, fabrication, and testing of ferroelectric patterned materials in the guided-wave and polaritonic regime. We demonstrate their functionality and exploit polariton confinement for amplification and coherent control using temporal pulse shaping.
January 6, 2004
Using time resolved ultrafast spectroscopy, we have demonstrated that the far infrared (FIR) excitations in ferroelectric crystals may be modified through an arsenal of control techniques from the fields of guided waves, geometrical and Fourier optics, and optical pulse shaping. We show that LiNbO3 and LiTaO3 crystals of 10-250 micron thickness behave as slab waveguides for phonon-polaritons, which are admixtures of electromagnetic waves and lattice vibrations, when the polar...
March 20, 2023
Circular dichroism is a technologically important phenomenon contrasting the absorption and resultant emission properties between left- and right-handed circularly polarized light. While the chiral handedness of systems mainly determines the mechanism of the circular dichroism in linear optics, the counterpart in the nonlinear optical regime is nontrivial. Here, in contrast to traditional nonlinear circular dichroism responses from structured surfaces, we report on an unprece...
January 23, 2017
The ability to manipulate ferroelectrics at ultrafast speeds has long been an elusive target for materials research. Coherently exciting the ferroelectric mode with ultrashort optical pulses holds the promise to switch the ferroelectric polarization on femtosecond timescale, two orders of magnitude faster compared to what is possible today with pulsed electric fields. Here, we report on the demonstration of ultrafast optical reversal of the ferroelectric polarization in LiNbO...
December 12, 2023
Thin-film lithium niobate (TFLN) enables extremely high-efficiency second-order nonlinear optical effects due to large nonlinear coefficient d33 and strong optical field localization. Here, we first designed and fabricated a pulley-waveguide-coupled microring resonator with an intrinsic quality factor above 9.4 x10^5 on the reverse-polarized double-layer X-cut TFLN. In such a TFLN resonator without fine domain structures, second harmonic generation with an absolute (normalize...
October 2, 2018
The lithium niobate integrated photonic platform has recently shown great promise in nonlinear optics on a chip scale. Here, we report second-harmonic generation in a high-Q lithium niobate microring resonator through modal phase matching, with a conversion efficiency of 1,500% W$^{-1}$. Our device also allows us to observe difference-frequency generation in the telecom band. Our work demonstrates the great potential of the lithium niobate integrated platform for nonlinear wa...