June 8, 2016
This paper connects a vector-based composition model to a formal semantics, the Dependency-based Compositional Semantics (DCS). We show theoretical evidence that the vector compositions in our model conform to the logic of DCS. Experimentally, we show that vector-based composition brings a strong ability to calculate similar phrases as similar vectors, achieving near state-of-the-art on a wide range of phrase similarity tasks and relation classification; meanwhile, DCS can gu...
January 9, 2000
In a recent issue of Linguistics and Philosophy Kasmi and Pelletier (1998) (K&P), and Westerstahl (1998) criticize Zadrozny's (1994) argument that any semantics can be represented compositionally. The argument is based upon Zadrozny's theorem that every meaning function m can be encoded by a function \mu such that (i) for any expression E of a specified language L, m(E) can be recovered from \mu(E), and (ii) \mu is a homomorphism from the syntactic structures of L to interpre...
May 9, 2011
We provide an overview of the hybrid compositional distributional model of meaning, developed in Coecke et al. (arXiv:1003.4394v1 [cs.CL]), which is based on the categorical methods also applied to the analysis of information flow in quantum protocols. The mathematical setting stipulates that the meaning of a sentence is a linear function of the tensor products of the meanings of its words. We provide concrete constructions for this definition and present techniques to build ...
April 15, 2024
Compositional generalization is the ability of a model to generalize to complex, previously unseen types of combinations of entities from just having seen the primitives. This type of generalization is particularly relevant to the semantic parsing community for applications such as task-oriented dialogue, text-to-SQL parsing, and information retrieval, as they can harbor infinite complexity. Despite the success of large language models (LLMs) in a wide range of NLP tasks, unl...
June 6, 2019
We present work in progress on the temporal progression of compositionality in noun-noun compounds. Previous work has proposed computational methods for determining the compositionality of compounds. These methods try to automatically determine how transparent the meaning of the compound as a whole is with respect to the meaning of its parts. We hypothesize that such a property might change over time. We use the time-stamped Google Books corpus for our diachronic investigatio...
September 5, 2017
Identifying the relations that exist between words (or entities) is important for various natural language processing tasks such as, relational search, noun-modifier classification and analogy detection. A popular approach to represent the relations between a pair of words is to extract the patterns in which the words co-occur with from a corpus, and assign each word-pair a vector of pattern frequencies. Despite the simplicity of this approach, it suffers from data sparseness...
June 13, 2024
Compositional learning, mastering the ability to combine basic concepts and construct more intricate ones, is crucial for human cognition, especially in human language comprehension and visual perception. This notion is tightly connected to generalization over unobserved situations. Despite its integral role in intelligence, there is a lack of systematic theoretical and experimental research methodologies, making it difficult to analyze the compositional learning abilities of...
September 22, 2015
The `pet fish' phenomenon is often cited as a paradigm example of the `non-compositionality' of human concept use. We show here how this phenomenon is naturally accommodated within a compositional distributional model of meaning. This model describes the meaning of a composite concept by accounting for interaction between its constituents via their grammatical roles. We give two illustrative examples to show how the qualitative phenomena are exhibited. We go on to apply the m...
May 8, 1995
We define {\em semantic complexity} using a new concept of {\em meaning automata}. We measure the semantic complexity of understanding of prepositional phrases, of an "in depth understanding system", and of a natural language interface to an on-line calendar. We argue that it is possible to measure some semantic complexities of natural language processing systems before building them, and that systems that exhibit relatively complex behavior can be built from semantically sim...
August 22, 2019
Despite a multitude of empirical studies, little consensus exists on whether neural networks are able to generalise compositionally, a controversy that, in part, stems from a lack of agreement about what it means for a neural model to be compositional. As a response to this controversy, we present a set of tests that provide a bridge between, on the one hand, the vast amount of linguistic and philosophical theory about compositionality of language and, on the other, the succe...