November 29, 2000
Similar papers 3
October 25, 2021
Data-driven decision making is rapidly gaining popularity, fueled by the ever-increasing amounts of available data and encouraged by the development of models that can identify beyond linear input-output relationships. Simultaneously the need for interpretable prediction- and classification methods is increasing, as this improves both our trust in these models and the amount of information we can abstract from data. An important aspect of this interpretability is to obtain in...
July 15, 2018
The field of statistical relational learning aims at unifying logic and probability to reason and learn from data. Perhaps the most successful paradigm in the field is probabilistic logic programming: the enabling of stochastic primitives in logic programming, which is now increasingly seen to provide a declarative background to complex machine learning applications. While many systems offer inference capabilities, the more significant challenge is that of learning meaningful...
October 12, 2014
We propose relational linear programming, a simple framework for combing linear programs (LPs) and logic programs. A relational linear program (RLP) is a declarative LP template defining the objective and the constraints through the logical concepts of objects, relations, and quantified variables. This allows one to express the LP objective and constraints relationally for a varying number of individuals and relations among them without enumerating them. Together with a logic...
August 16, 2024
Parameter learning is a crucial task in the field of Statistical Relational Artificial Intelligence: given a probabilistic logic program and a set of observations in the form of interpretations, the goal is to learn the probabilities of the facts in the program such that the probabilities of the interpretations are maximized. In this paper, we propose two algorithms to solve such a task within the formalism of Probabilistic Answer Set Programming, both based on the extraction...
February 3, 2025
The goal of inductive logic programming (ILP) is to find a set of logical rules that generalises training examples and background knowledge. We introduce an ILP approach that identifies pointless rules. A rule is pointless if it contains a redundant literal or cannot discriminate against negative examples. We show that ignoring pointless rules allows an ILP system to soundly prune the hypothesis space. Our experiments on multiple domains, including visual reasoning and game p...
January 7, 2020
The wide adoption of machine learning in the critical domains such as medical diagnosis, law, education had propelled the need for interpretable techniques due to the need for end users to understand the reasoning behind decisions due to learning systems. The computational intractability of interpretable learning led practitioners to design heuristic techniques, which fail to provide sound handles to tradeoff accuracy and interpretability. Motivated by the success of MaxSAT...
April 29, 2021
Discovering novel high-level concepts is one of the most important steps needed for human-level AI. In inductive logic programming (ILP), discovering novel high-level concepts is known as predicate invention (PI). Although seen as crucial since the founding of ILP, PI is notoriously difficult and most ILP systems do not support it. In this paper, we introduce POPPI, an ILP system that formulates the PI problem as an answer set programming problem. Our experiments show that (i...
March 29, 2019
Deep learning methods capable of handling relational data have proliferated over the last years. In contrast to traditional relational learning methods that leverage first-order logic for representing such data, these deep learning methods aim at re-representing symbolic relational data in Euclidean spaces. They offer better scalability, but can only numerically approximate relational structures and are less flexible in terms of reasoning tasks supported. This paper introduce...
March 11, 2011
Most machine learning tools work with a single table where each row is an instance and each column is an attribute. Each cell of the table contains an attribute value for an instance. This representation prevents one important form of learning, which is, classification based on groups of correlated records, such as multiple exams of a single patient, internet customer preferences, weather forecast or prediction of sea conditions for a given day. To some extent, relational lea...
May 19, 2017
The field of Statistical Relational Learning (SRL) is concerned with learning probabilistic models from relational data. Learned SRL models are typically represented using some kind of weighted logical formulas, which make them considerably more interpretable than those obtained by e.g. neural networks. In practice, however, these models are often still difficult to interpret correctly, as they can contain many formulas that interact in non-trivial ways and weights do not alw...