July 2, 2002
Similar papers 5
March 29, 2019
Authors' keyphrases assigned to scientific articles are essential for recognizing content and topic aspects. Most of the proposed supervised and unsupervised methods for keyphrase generation are unable to produce terms that are valuable but do not appear in the text. In this paper, we explore the possibility of considering the keyphrase string as an abstractive summary of the title and the abstract. First, we collect, process and release a large dataset of scientific paper me...
November 3, 2020
Recent advances in natural language processing have enabled automation of a wide range of tasks, including machine translation, named entity recognition, and sentiment analysis. Automated summarization of documents, or groups of documents, however, has remained elusive, with many efforts limited to extraction of keywords, key phrases, or key sentences. Accurate abstractive summarization has yet to be achieved due to the inherent difficulty of the problem, and limited availabi...
June 30, 2021
Cybersecurity is a very challenging topic of research nowadays, as digitalization increases the interaction of people, software and services on the Internet by means of technology devices and networks connected to it. The field is broad and has a lot of unexplored ground under numerous disciplines such as management, psychology, and data science. Its large disciplinary spectrum and many significant research topics generate a considerable amount of information, making it hard ...
August 29, 2019
We present a novel system providing summaries for Computer Science publications. Through a qualitative user study, we identified the most valuable scenarios for discovery, exploration and understanding of scientific documents. Based on these findings, we built a system that retrieves and summarizes scientific documents for a given information need, either in form of a free-text query or by choosing categorized values such as scientific tasks, datasets and more. Our system ing...
August 26, 2018
Keyphrase generation (KG) aims to generate a set of keyphrases given a document, which is a fundamental task in natural language processing (NLP). Most previous methods solve this problem in an extractive manner, while recently, several attempts are made under the generative setting using deep neural networks. However, the state-of-the-art generative methods simply treat the document title and the document main body equally, ignoring the leading role of the title to the overa...
December 13, 2021
Keyphrase generation aims at generating important phrases (keyphrases) that best describe a given document. In scholarly domains, current approaches have largely used only the title and abstract of the articles to generate keyphrases. In this paper, we comprehensively explore whether the integration of additional information from the full text of a given article or from semantically similar articles can be helpful for a neural keyphrase generation model or not. We discover th...
March 3, 2022
One of the most pressing issues that have arisen due to the rapid growth of the Internet is known as information overloading. Simplifying the relevant information in the form of a summary will assist many people because the material on any topic is plentiful on the Internet. Manually summarising massive amounts of text is quite challenging for humans. So, it has increased the need for more complex and powerful summarizers. Researchers have been trying to improve approaches fo...
July 26, 2023
This study introduces and empirically tests a novel predictive model for digital information engagement (IE) - the READ model, an acronym for the four pivotal attributes of engaging information: Representativeness, Ease-of-use, Affect, and Distribution. Conceptualized within the theoretical framework of Cumulative Prospect Theory, the model integrates key cognitive biases with computational linguistics and natural language processing to develop a multidimensional perspective ...
May 6, 2019
Automatic text summarisation has drawn considerable interest in the field of software engineering. It can improve the efficiency of software developers, enhance the quality of products, and ensure timely delivery. In this paper, we present our initial work towards automatically generating human-like multi-document summaries from heterogeneous software artefacts. Our analysis of the text properties of 545 human-written summaries from 15 software engineering projects will ultim...
July 29, 2024
The availability of a vast array of research papers in any area of study, necessitates the need of automated summarisation systems that can present the key research conducted and their corresponding findings. Scientific paper summarisation is a challenging task for various reasons including token length limits in modern transformer models and corresponding memory and compute requirements for long text. A significant amount of work has been conducted in this area, with approac...