December 9, 2002
Similar papers 3
June 26, 2022
Spatiotemporal data mining aims to discover interesting, useful but non-trivial patterns in big spatial and spatiotemporal data. They are used in various application domains such as public safety, ecology, epidemiology, earth science, etc. This problem is challenging because of the high societal cost of spurious patterns and exorbitant computational cost. Recent surveys of spatiotemporal data mining need update due to rapid growth. In addition, they did not adequately survey ...
October 12, 2011
In this paper, we construct and investigate a hierarchy of spatio-temporal formalisms that result from various combinations of propositional spatial and temporal logics such as the propositional temporal logic PTL, the spatial logics RCC-8, BRCC-8, S4u and their fragments. The obtained results give a clear picture of the trade-off between expressiveness and computational realisability within the hierarchy. We demonstrate how different combining principles as well as spatial a...
November 13, 2017
Large volumes of spatio-temporal data are increasingly collected and studied in diverse domains including, climate science, social sciences, neuroscience, epidemiology, transportation, mobile health, and Earth sciences. Spatio-temporal data differs from relational data for which computational approaches are developed in the data mining community for multiple decades, in that both spatial and temporal attributes are available in addition to the actual measurements/attributes. ...
June 16, 2021
The Internet-of-Things, complex sensor networks, multi-agent cyber-physical systems are all examples of spatially distributed systems that continuously evolve in time. Such systems generate huge amounts of spatio-temporal data, and system designers are often interested in analyzing and discovering structure within the data. There has been considerable interest in learning causal and logical properties of temporal data using logics such as Signal Temporal Logic (STL); however,...
June 1, 2016
Qualitative Spatial and Temporal Reasoning (QSTR) is concerned with symbolic knowledge representation, typically over infinite domains. The motivations for employing QSTR techniques range from exploiting computational properties that allow efficient reasoning to capture human cognitive concepts in a computational framework. The notion of a qualitative calculus is one of the most prominent QSTR formalisms. This article presents the first overview of all qualitative calculi dev...
December 12, 2007
In the constraint database model, spatial and spatio-temporal data are stored by boolean combinations of polynomial equalities and inequalities over the real numbers. The relational calculus augmented with polynomial constraints is the standard first-order query language for constraint databases. Although the expressive power of this query language has been studied extensively, the difficulty of the efficient evaluation of queries, usually involving some form of quantifier el...
March 17, 2021
Due to the surge of spatio-temporal data volume, the popularity of location-based services and applications, and the importance of extracted knowledge from spatio-temporal data to solve a wide range of real-world problems, a plethora of research and development work has been done in the area of spatial and spatio-temporal data analytics in the past decade. The main goal of existing works was to develop algorithms and technologies to capture, store, manage, analyze, and visual...
May 31, 2013
Qualitative spatial and temporal reasoning is based on so-called qualitative calculi. Algebraic properties of these calculi have several implications on reasoning algorithms. But what exactly is a qualitative calculus? And to which extent do the qualitative calculi proposed meet these demands? The literature provides various answers to the first question but only few facts about the second. In this paper we identify the minimal requirements to binary spatio-temporal calculi a...
May 17, 2018
We present ASP Modulo `Space-Time', a declarative representational and computational framework to perform commonsense reasoning about regions with both spatial and temporal components. Supported are capabilities for mixed qualitative-quantitative reasoning, consistency checking, and inferring compositions of space-time relations; these capabilities combine and synergise for applications in a range of AI application areas where the processing and interpretation of spatio-tempo...
August 1, 2012
Data warehouse store and provide access to large volume of historical data supporting the strategic decisions of organisations. Data warehouse is based on a multidimensional model which allow to express user's needs for supporting the decision making process. Since it is estimated that 80% of data used for decision making has a spatial or location component [1, 2], spatial data have been widely integrated in Data Warehouses and in OLAP systems. Extending a multidimensional da...