November 27, 2021
This article is intended for physical scientists who wish to gain deeper insights into machine learning algorithms which we present via the domain they know best, physics. We begin with a review of two energy-based machine learning algorithms, Hopfield networks and Boltzmann machines, and their connection to the Ising model. This serves as a foundation to understand the phenomenon of learning more generally. Equipped with this intuition we then delve into additional, more "pr...
January 29, 2002
The article is a lightly edited version of my habilitation thesis at the University Wuerzburg. My aim is to give a self contained, if concise, introduction to the formal methods used when off-line learning in feedforward networks is analyzed by statistical physics. However, due to its origin, the article is not a comprehensive review of the field but is highly skewed towards reporting my own research.
December 8, 2023
What do artificial neural networks (ANNs) learn? The machine learning (ML) community shares the narrative that ANNs must develop abstract human concepts to perform complex tasks. Some go even further and believe that these concepts are stored in individual units of the network. Based on current research, I systematically investigate the assumptions underlying this narrative. I conclude that ANNs are indeed capable of performing complex prediction tasks, and that they may lear...
September 21, 2021
Deep learning has transformed the way we think of software and what it can do. But deep neural networks are fragile and their behaviors are often surprising. In many settings, we need to provide formal guarantees on the safety, security, correctness, or robustness of neural networks. This book covers foundational ideas from formal verification and their adaptation to reasoning about neural networks and deep learning.
April 30, 2014
In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarises relevant work, much of it from the previous millennium. Shallow and deep learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the ...
March 23, 2016
Developing Intelligent Systems involves artificial intelligence approaches including artificial neural networks. Here, we present a tutorial of Deep Neural Networks (DNNs), and some insights about the origin of the term "deep"; references to deep learning are also given. Restricted Boltzmann Machines, which are the core of DNNs, are discussed in detail. An example of a simple two-layer network, performing unsupervised learning for unlabeled data, is shown. Deep Belief Network...
April 6, 2022
Artificial neural networks (ANN), typically referred to as neural networks, are a class of Machine Learning algorithms and have achieved widespread success, having been inspired by the biological structure of the human brain. Neural networks are inherently powerful due to their ability to learn complex function approximations from data. This generalization ability has been able to impact multidisciplinary areas involving image recognition, speech recognition, natural language...
February 12, 2020
Deep learning networks have been trained to recognize speech, caption photographs and translate text between languages at high levels of performance. Although applications of deep learning networks to real world problems have become ubiquitous, our understanding of why they are so effective is lacking. These empirical results should not be possible according to sample complexity in statistics and non-convex optimization theory. However, paradoxes in the training and effective...
April 28, 2014
Automatic differentiation---the mechanical transformation of numeric computer programs to calculate derivatives efficiently and accurately---dates to the origin of the computer age. Reverse mode automatic differentiation both antedates and generalizes the method of backwards propagation of errors used in machine learning. Despite this, practitioners in a variety of fields, including machine learning, have been little influenced by automatic differentiation, and make scant use...
February 26, 2020
Neural networks are important tools for data-intensive analysis and are commonly applied to model non-linear relationships between dependent and independent variables. However, neural networks are usually seen as "black boxes" that offer minimal information about how the input variables are used to predict the response in a fitted model. This article describes the \pkg{NeuralSens} package that can be used to perform sensitivity analysis of neural networks using the partial de...