September 17, 2018
When modeling real world domains we have to deal with information that is incomplete or that comes from sources with different trust levels. This motivates the need for managing uncertainty in the Semantic Web. To this purpose, we introduced a probabilistic semantics, named DISPONTE, in order to combine description logics with probability theory. The probability of a query can be then computed from the set of its explanations by building a Binary Decision Diagram (BDD). The s...
March 13, 2013
A number of writers(Joseph Halpern and Fahiem Bacchus among them) have offered semantics for formal languages in which inferences concerning probabilities can be made. Our concern is different. This paper provides a formalization of nonmonotonic inferences in which the conclusion is supported only to a certain degree. Such inferences are clearly 'invalid' since they must allow the falsity of a conclusion even when the premises are true. Nevertheless, such inferences can be ch...
December 6, 2014
Formalisms for specifying statistical models, such as probabilistic-programming languages, typically consist of two components: a specification of a stochastic process (the prior), and a specification of observations that restrict the probability space to a conditional subspace (the posterior). Use cases of such formalisms include the development of algorithms in machine learning and artificial intelligence. We propose and investigate a declarative framework for specifying st...
February 20, 2013
This paper discusses a method for implementing a probabilistic inference system based on an extended relational data model. This model provides a unified approach for a variety of applications such as dynamic programming, solving sparse linear equations, and constraint propagation. In this framework, the probability model is represented as a generalized relational database. Subsequent probabilistic requests can be processed as standard relational queries. Conventional databas...
March 20, 2013
In this paper we study the uses and the semantics of non-monotonic negation in probabilistic deductive data bases. Based on the stable semantics for classical logic programming, we introduce the notion of stable formula, functions. We show that stable formula, functions are minimal fixpoints of operators associated with probabilistic deductive databases with negation. Furthermore, since a. probabilistic deductive database may not necessarily have a stable formula function, we...
November 18, 2019
State-of-the-art inference approaches in probabilistic logic programming typically start by computing the relevant ground program with respect to the queries of interest, and then use this program for probabilistic inference using knowledge compilation and weighted model counting. We propose an alternative approach that uses efficient Datalog techniques to integrate knowledge compilation with forward reasoning with a non-ground program. This effectively eliminates the groundi...
February 3, 2022
Modern applications combine information from a great variety of sources. Oftentimes, some of these sources, like Machine-Learning systems, are not strictly binary but associated with some degree of (lack of) confidence in the observation. We propose MV-Datalog and MV-Datalog+- as extensions of Datalog and Datalog+-, respectively, to the fuzzy semantics of infinite-valued Lukasiewicz logic L as languages for effectively reasoning in scenarios where such uncertain observations ...
March 27, 2013
This extended abstract presents a logic, called Lp, that is capable of representing and reasoning with a wide variety of both qualitative and quantitative statistical information. The advantage of this logical formalism is that it offers a declarative representation of statistical knowledge; knowledge represented in this manner can be used for a variety of reasoning tasks. The logic differs from previous work in probability logics in that it uses a probability distribution ov...
March 14, 2008
Past research on probabilistic databases has studied the problem of answering queries on a static database. Application scenarios of probabilistic databases however often involve the conditioning of a database using additional information in the form of new evidence. The conditioning problem is thus to transform a probabilistic database of priors into a posterior probabilistic database which is materialized for subsequent query processing or further refinement. It turns out t...
February 20, 2013
In this paper we deal with a new approach to probabilistic reasoning in a logical framework. Nearly almost all logics of probability that have been proposed in the literature are based on classical two-valued logic. After making clear the differences between fuzzy logic and probability theory, here we propose a {em fuzzy} logic of probability for which completeness results (in a probabilistic sense) are provided. The main idea behind this approach is that probability values o...