February 3, 2005
A simple approach is presented to study the asymptotic behavior of some algorithms with an underlying tree structure. It is shown that some asymptotic oscillating behaviors can be precisely analyzed without resorting to complex analysis techniques as it is usually done in this context. A new explicit representation of periodic functions involved is obtained at the same time.
Similar papers 1
December 9, 2004
In this paper a general class of tree algorithms is analyzed. It is shown that, by using an appropriate probabilistic representation of the quantities of interest, the asymptotic behavior of these algorithms can be obtained quite easily without resorting to the usual complex analysis techniques. This approach gives a unified probabilistic treatment of these questions. It simplifies and extends some of the results known in this domain.
February 24, 2023
For the solutions $\Phi(z)$ of functional equations $\Phi(z)=P(z)+\Phi(Q(z))$, we derive a complete asymptotic of power series coefficients. As an application, we improve significantly an asymptotic of the number of $2,3$-trees with $n$ leaves given in Adv. Math. 44:180-205, 1982 by Andrew M. Odlyzko. The methods we consider can be applied to more general functional equations too.
October 20, 2022
We study divide-and-conquer recurrences of the form \begin{equation*} f(n) = \alpha f(\lfloor \tfrac n2\rfloor) + \beta f(\lceil \tfrac n2\rceil) + g(n) \qquad(n\ge2), \end{equation*} with $g(n)$ and $f(1)$ given, where $\alpha,\beta\ge0$ with $\alpha+\beta>0$; such recurrences appear often in analysis of computer algorithms, numeration systems, combinatorial sequences, and related areas. We show that the solution satisfies always the simple \emph{identity} \begin{equ...
July 27, 2020
One of the primary goals of the mathematical analysis of algorithms is to provide guidance about which algorithm is the "best" for solving a given computational problem. Worst-case analysis summarizes the performance profile of an algorithm by its worst performance on any input of a given size, implicitly advocating for the algorithm with the best-possible worst-case performance. Strong worst-case guarantees are the holy grail of algorithm design, providing an application-agn...
April 20, 2013
Asymptotic notations are heavily used while analysing runtimes of algorithms. Present paper argues that some of these usages are non trivial, therefore incurring errors in communication of ideas. After careful reconsidera- tion of the various existing notations a new notation is proposed. This notation has similarities with the other heavily used notations like Big-Oh, Big Theta, while being more accurate when describing the order relationship. It has been argued that this no...
June 13, 2003
Additive tree functionals represent the cost of many divide-and-conquer algorithms. We derive the limiting distribution of the additive functionals induced by toll functions of the form (a) n^\alpha when \alpha > 0 and (b) log n (the so-called shape functional) on uniformly distributed binary search trees, sometimes called Catalan trees. The Gaussian law obtained in the latter case complements the central limit theorem for the shape functional under the random permutation mod...
January 12, 1998
This paper reports on a new algorithm to compute the asymptotic solutions of a linear differential system. A feature of the algorithm is the ability to accommodate periodic coefficients.
October 9, 2020
In this paper, we provide new insights and analysis for the two elementary tree-based data structures - the AVL tree and binary heap. We presented two simple properties that gives a more direct way of relating the size of an AVL tree and the Fibonacci recurrence to establish the AVL tree's logarithmic height. We then give a potential function-based analysis of the bottom-up heap construction to get a simpler and tight bound for its worst-case running-time.
December 17, 2013
The present paper gives a statistical adventure towards exploring the average case complexity behavior of computer algorithms. Rather than following the traditional count based analytical (pen and paper) approach, we instead talk in terms of the weight based analysis that permits mixing of distinct operations into a conceptual bound called the statistical bound and its empirical estimate, the so called "empirical O". Based on careful analysis of the results obtained, we have ...
March 30, 2020
This paper is the confluence of two streams of ideas in the literature on generating numerical invariants, namely: (1) template-based methods, and (2) recurrence-based methods. A template-based method begins with a template that contains unknown quantities, and finds invariants that match the template by extracting and solving constraints on the unknowns. A disadvantage of template-based methods is that they require fixing the set of terms that may appear in an invariant in a...