May 23, 2005
Similar papers 4
March 14, 2011
Based on the extended binary image of non-binary LDPC codes, we propose a method for generating extra redundant bits, such as to decreases the coding rate of a mother code. The proposed method allows for using the same decoder, regardless of how many extra redundant bits have been produced, which considerably increases the flexibility of the system without significantly increasing its complexity. Extended codes are also optimized for the binary erasure channel, by using densi...
October 10, 2006
This paper focuses on finite-dimensional upper and lower bounds on decodable thresholds of Zm and binary low-density parity-check (LDPC) codes, assuming belief propagation decoding on memoryless channels. A concrete framework is presented, admitting systematic searches for new bounds. Two noise measures are considered: the Bhattacharyya noise parameter and the soft bit value for a maximum a posteriori probability (MAP) decoder on the uncoded channel. For Zm LDPC codes, an ite...
February 4, 2009
While linear programming (LP) decoding provides more flexibility for finite-length performance analysis than iterative message-passing (IMP) decoding, it is computationally more complex to implement in its original form, due to both the large size of the relaxed LP problem, and the inefficiency of using general-purpose LP solvers. This paper explores ideas for fast LP decoding of low-density parity-check (LDPC) codes. We first prove, by modifying the previously reported Adapt...
January 23, 2008
We propose a deterministic method to design irregular Low-Density Parity-Check (LDPC) codes for binary erasure channels (BEC). Compared to the existing methods, which are based on the application of asymptomatic analysis tools such as density evolution or Extrinsic Information Transfer (EXIT) charts in an optimization process, the proposed method is much simpler and faster. Through a number of examples, we demonstrate that the codes designed by the proposed method perform ver...
April 13, 2007
We describe and analyze the joint source/channel coding properties of a class of sparse graphical codes based on compounding a low-density generator matrix (LDGM) code with a low-density parity check (LDPC) code. Our first pair of theorems establish that there exist codes from this ensemble, with all degrees remaining bounded independently of block length, that are simultaneously optimal as both source and channel codes when encoding and decoding are performed optimally. More...
February 28, 2012
A variety of low-density parity-check (LDPC) ensembles have now been observed to approach capacity with message-passing decoding. However, all of them use soft (i.e., non-binary) messages and a posteriori probability (APP) decoding of their component codes. In this paper, we show that one can approach capacity at high rates using iterative hard-decision decoding (HDD) of generalized product codes. Specifically, a class of spatially-coupled GLDPC codes with BCH component codes...
December 3, 2006
A method for estimating the performance of low-density parity-check (LDPC) codes decoded by hard-decision iterative decoding algorithms on binary symmetric channels (BSC) is proposed. Based on the enumeration of the smallest weight error patterns that can not be all corrected by the decoder, this method estimates both the frame error rate (FER) and the bit error rate (BER) of a given LDPC code with very good precision for all crossover probabilities of practical interest. Thr...
January 17, 2014
The complexity-performance trade-off is a fundamental aspect of the design of low-density parity-check (LDPC) codes. In this paper, we consider LDPC codes for the binary erasure channel (BEC), use code rate for performance metric, and number of decoding iterations to achieve a certain residual erasure probability for complexity metric. We first propose a quite accurate approximation of the number of iterations for the BEC. Moreover, a simple but efficient utility function cor...
April 30, 2002
We investigate the use of Gallager's low-density parity-check (LDPC) codes in a broadcast channel, one of the fundamental models in network information theory. Combining linear codes is a standard technique in practical network communication schemes and is known to provide better performance than simple timesharing methods when algebraic codes are used. The statistical physics based analysis shows that the practical performance of the suggested method, achieved by employing t...
April 10, 2008
We consider lossy compression of a binary symmetric source by means of a low-density generator-matrix code. We derive two lower bounds on the rate distortion function which are valid for any low-density generator-matrix code with a given node degree distribution L(x) on the set of generators and for any encoding algorithm. These bounds show that, due to the sparseness of the code, the performance is strictly bounded away from the Shannon rate-distortion function. In this sens...