December 29, 2005
Similar papers 3
September 16, 2016
The switching model is a Markov chain approach to sample graphs with fixed degree sequence uniformly at random. The recently invented Curveball algorithm for bipartite graphs applies several switches simultaneously (`trades'). Here, we introduce Curveball algorithms for simple (un)directed graphs which use single or simultaneous trades. We show experimentally that these algorithms converge magnitudes faster than the corresponding switching models.
August 4, 2008
We propose a Markov chain simulation method to generate simple connected random graphs with a specified degree sequence and level of clustering. The networks generated by our algorithm are random in all other respects and can thus serve as generic models for studying the impacts of degree distributions and clustering on dynamical processes as well as null models for detecting other structural properties in empirical networks.
April 20, 2022
The approximate uniform sampling of graph realizations with a given degree sequence is an everyday task in several social science, computer science, engineering etc. projects. One approach is using Markov chains. The best available current result about the well-studied switch Markov chain is that it is rapidly mixing on P-stable degree sequences (see DOI:10.1016/j.ejc.2021.103421). The switch Markov chain does not change any degree sequence. However, there are cases where deg...
May 25, 2021
The configuration model is a standard tool for uniformly generating random graphs with a specified degree sequence, and is often used as a null model to evaluate how much of an observed network's structure can be explained by its degree structure alone. A Markov chain Monte Carlo (MCMC) algorithm, based on a degree-preserving double-edge swap, provides an asymptotic solution to sample from the configuration model. However, accurately and efficiently detecting this Markov chai...
January 28, 2019
Random graphs with a given degree sequence are often constructed using the configuration model, which yields a random multigraph. We may adjust this multigraph by a sequence of switchings, eventually yielding a simple graph. We show that, assuming essentially a bounded second moment of the degree distribution, this construction with the simplest types of switchings yields a simple random graph with an almost uniform distribution, in the sense that the total variation distance...
March 15, 2019
Since 1997 a considerable effort has been spent to study the mixing time of switch Markov chains on the realizations of graphic degree sequences of simple graphs. Several results were proved on rapidly mixing Markov chains on unconstrained, bipartite, and directed sequences, using different mechanisms. The aim of this paper is to unify these approaches. We will illustrate the strength of the unified method by showing that on any $P$-stable family of unconstrained/bipartite/di...
August 30, 2013
Sampling from combinatorial families can be difficult. However, complicated families can often be embedded within larger, simpler ones, for which easy sampling algorithms are known. We take advantage of such a relationship to describe a sampling algorithm for the smaller family, via a Markov chain started at a random sample of the larger family. The utility of the method is demonstrated via several examples, with particular emphasis on sampling labelled graphs with given degr...
September 23, 2015
Let $F$ be a probability distribution with support on the non-negative integers. Four methods for generating a simple undirected graph with (approximate) degree distribution $F$ are described and compared. Two methods are based on the so called configuration model with modifications ensuring a simple graph, one method is an extension of the classical Erd\H{o}s-R\'{e}nyi graph where the edge probabilities are random variables, and the last method starts with a directed random ...
September 8, 2017
We give a linear-time algorithm that approximately uniformly generates a random simple graph with a power-law degree sequence whose exponent is at least 2.8811. While sampling graphs with power-law degree sequence of exponent at least 3 is fairly easy, and many samplers work efficiently in this case, the problem becomes dramatically more difficult when the exponent drops below 3; ours is the first provably practicable sampler for this case. We also show that with an appropria...
April 15, 2010
In this paper we consider a simple Markov chain for bipartite graphs with given degree sequence on $n$ vertices. We show that the mixing time of this Markov chain is bounded above by a polynomial in $n$ in case of {\em semi-regular} degree sequence. The novelty of our approach lays in the construction of the canonical paths in Sinclair's method.