January 14, 2006
Similar papers 2
November 11, 2023
This paper presents a vision guidance and control method for autonomous robotic capture and stabilization of orbital objects in a time-critical manner. The method takes into account various operational and physical constraints, including ensuring a smooth capture, handling line-of-sight (LOS) obstructions of the target, and staying within the acceleration, force, and torque limits of the robot. Our approach involves the development of an optimal control framework for an eye-t...
July 11, 2024
Transportation missions in aerospace are limited to the capability of each aerospace robot and the properties of the target transported object, such as mass, inertia, and grasping locations. We present a novel decentralized adaptive controller design for multiple robots that can be implemented in different kinds of aerospace robots. Our controller adapts to unknown objects in different gravity environments. We validate our method in an aerial scenario using multiple fully act...
March 13, 2024
Space robots have played a critical role in autonomous maintenance and space junk removal. Multi-arm space robots can efficiently complete the target capture and base reorientation tasks due to their flexibility and the collaborative capabilities between the arms. However, the complex coupling properties arising from both the multiple arms and the free-floating base present challenges to the motion planning problems of multi-arm space robots. We observe that the octopus elega...
September 2, 2018
Accurate information of inertial parameters is critical to motion planning and control of space robots. Before the launch, only a rudimentary estimate of the inertial parameters is available from experiments and computer-aided design (CAD) models. After the launch, on-orbit operations substantially alter the value of inertial parameters. In this work, we propose a new momentum model-based method for identifying the minimal parameters of a space robot while on orbit. Minimal p...
March 30, 2024
Mobile manipulators are known for their superior mobility over manipulators on fixed bases, offering promising applications in smart industry and housekeeping scenarios. However, the dynamic coupling nature between the mobile base and the manipulator presents challenges for the physical interactive tasks of the mobile manipulator. Current methods suffer from complex modeling processes and poor transferability. To address this, this article presents a novel dynamic model of th...
September 30, 2022
On-orbit operations such as servicing and assembly are considered a priority for the future space industry. Ground-based facilities that emulate on-orbit interactions are key tools for developing and testing space technology. This paper presents a control framework to emulate on-orbit operations using on-ground robotic manipulators. It combines Virtual Forward Dynamics Models (VFDM) for Cartesian motion control of robotic manipulators with an Orbital Dynamics Simulator (ODS) ...
July 5, 2023
To achieve high-dexterity motion planning on floating-base systems, the base dynamics induced by arm motions must be treated carefully. In general, it is a significant challenge to establish a fixed-base frame during tasking due to forces and torques on the base that arise directly from arm motions (e.g. arm drag in low Reynolds environments and arm momentum in high Reynolds environments). While thrusters can in theory be used to regulate the vehicle pose, it is often insuffi...
February 20, 2021
As access to space and robotic autonomy capabilities move forward, there is simultaneously a growing interest in deploying large, complex space structures to provide new on-orbit capabilities. New space-borne observatories, large orbital outposts, and even futuristic on-orbit manufacturing will be enabled by robotic assembly of space structures using techniques like on-orbit additive manufacturing which can provide flexibility in constructing and even repairing complex hardwa...
October 8, 2022
In this work, we present a hybrid simulator for space docking and robotic proximity operations methodology. This methodology also allows for the emulation of a target robot operating in a complex environment by using an actual robot. The emulation scheme aims to replicate the dynamic behavior of the target robot interacting with the environment, without dealing with a complex calculation of the contact dynamics. This method forms a basis for the task verification of a flexibl...
September 24, 2024
In real-world field operations, aerial grasping systems face significant challenges in dynamic environments due to strong winds, shifting surfaces, and the need to handle heavy loads. Particularly when dealing with heavy objects, the powerful propellers of the drone can inadvertently blow the target object away as it approaches, making the task even more difficult. To address these challenges, we introduce SPIBOT, a novel drone-tethered mobile gripper system designed for robu...