June 22, 2006
Prediction is a complex notion, and different predictors (such as people, computer programs, and probabilistic theories) can pursue very different goals. In this paper I will review some popular kinds of prediction and argue that the theory of competitive on-line learning can benefit from the kinds of prediction that are now foreign to it.
June 6, 2010
We consider the problem of sequential prediction and provide tools to study the minimax value of the associated game. Classical statistical learning theory provides several useful complexity measures to study learning with i.i.d. data. Our proposed sequential complexities can be seen as extensions of these measures to the sequential setting. The developed theory is shown to yield precise learning guarantees for the problem of sequential prediction. In particular, we show nece...
February 3, 2010
The paper deals with on-line regression settings with signals belonging to a Banach lattice. Our algorithms work in a semi-online setting where all the inputs are known in advance and outcomes are unknown and given step by step. We apply the Aggregating Algorithm to construct a prediction method whose cumulative loss over all the input vectors is comparable with the cumulative loss of any linear functional on the Banach lattice. As a by-product we get an algorithm that takes ...
October 12, 2019
In this paper, we derive generic bounds on the maximum deviations in prediction errors for sequential prediction via an information-theoretic approach. The fundamental bounds are shown to depend only on the conditional entropy of the data point to be predicted given the previous data points. In the asymptotic case, the bounds are achieved if and only if the prediction error is white and uniformly distributed.
March 26, 2021
This paper addresses the problem of online learning in metric spaces using exponential weights. We extend the analysis of the exponentially weighted average forecaster, traditionally studied in a Euclidean settings, to a more abstract framework. Our results rely on the notion of barycenters, a suitable version of Jensen's inequality and a synthetic notion of lower curvature bound in metric spaces known as the measure contraction property. We also adapt the online-to-batch con...
March 5, 2017
Online-learning research has mainly been focusing on minimizing one objective function. In many real-world applications, however, several objective functions have to be considered simultaneously. Recently, an algorithm for dealing with several objective functions in the i.i.d. case has been presented. In this paper, we extend the multi-objective framework to the case of stationary and ergodic processes, thus allowing dependencies among observations. We first identify an asymp...
July 13, 2006
In this paper we introduce the class of stationary prediction strategies and construct a prediction algorithm that asymptotically performs as well as the best continuous stationary strategy. We make mild compactness assumptions but no stochastic assumptions about the environment. In particular, no assumption of stationarity is made about the environment, and the stationarity of the considered strategies only means that they do not depend explicitly on time; we argue that it i...
September 9, 2020
In this work, we aim to create a completely online algorithmic framework for prediction with expert advice that is translation-free and scale-free of the expert losses. Our goal is to create a generalized algorithm that is suitable for use in a wide variety of applications. For this purpose, we study the expected regret of our algorithm against a generic competition class in the sequential prediction by expert advice problem, where the expected regret measures the difference ...
January 12, 2020
In this paper, we examine the fundamental performance limits of prediction, with or without side information. More specifically, we derive generic lower bounds on the $\mathcal{L}_p$ norms of the prediction errors that are valid for any prediction algorithms and for any data distributions. Meanwhile, we combine the entropic analysis from information theory and the innovations approach from prediction/estimation theory to characterize the conditions (in terms of, e.g., directe...
February 5, 2020
One of the main strengths of online algorithms is their ability to adapt to arbitrary data sequences. This is especially important in nonparametric settings, where performance is measured against rich classes of comparator functions that are able to fit complex environments. Although such hard comparators and complex environments may exhibit local regularities, efficient algorithms, which can provably take advantage of these local patterns, are hardly known. We fill this gap ...