December 19, 2006
Similar papers 5
March 23, 2018
An important preprocessing step in most data analysis pipelines aims to extract a small set of sources that explain most of the data. Currently used algorithms for blind source separation (BSS), however, often fail to extract the desired sources and need extensive cross-validation. In contrast, their rarely used probabilistic counterparts can get away with little cross-validation and are more accurate and reliable but no simple and scalable implementations are available. Here...
March 31, 2019
With their ability to handle an increased amount of information, multivariate and multichannel signals can be used to solve problems normally not solvable with signals obtained from a single source. One such problem is the decomposition signals with several components whose domains of support significantly overlap in both the time and the frequency domain, including the joint time-frequency domain. Initially, we proposed a solution to this problem based on the Wigner distribu...
April 10, 2015
The article derives some novel independence measures and contrast functions for Blind Source Separation (BSS) application. For the $k^{th}$ order differentiable multivariate functions with equal hyper-volumes (region bounded by hyper-surfaces) and with a constraint of bounded support for $k>1$, it proves that equality of any $k^{th}$ order derivatives implies equality of the functions. The difference between product of marginal Probability Density Functions (PDFs) and joint P...
July 25, 2020
This paper extends recent work on nonlinear Independent Component Analysis (ICA) by introducing a theoretical framework for nonlinear Independent Subspace Analysis (ISA) in the presence of auxiliary variables. Observed high dimensional acoustic features like log Mel spectrograms can be considered as surface level manifestations of nonlinear transformations over individual multivariate sources of information like speaker characteristics, phonological content etc. Under assumpt...
November 27, 2017
In this paper, we propose a non-parametric method for state estimation of high-dimensional nonlinear stochastic dynamical systems, which evolve according to gradient flows with isotropic diffusion. We combine diffusion maps, a manifold learning technique, with a linear Kalman filter and with concepts from Koopman operator theory. More concretely, using diffusion maps, we construct data-driven virtual state coordinates, which linearize the system model. Based on these coordina...
December 2, 2008
Over the last ten years blind source separation (BSS) has become a prominent processing tool in the study of human electroencephalography (EEG). Without relying on head modeling BSS aims at estimating both the waveform and the scalp spatial pattern of the intracranial dipolar current responsible of the observed EEG. In this review we begin by placing the BSS linear instantaneous model of EEG within the framework of brain volume conduction theory. We then review the concept an...
September 25, 2019
We present a novel blind source separation (BSS) method, called information geometric blind source separation (IGBSS). Our formulation is based on the log-linear model equipped with a hierarchically structured sample space, which has theoretical guarantees to uniquely recover a set of source signals by minimizing the KL divergence from a set of mixed signals. Source signals, received signals, and mixing matrices are realized as different layers in our hierarchical sample spac...
March 27, 2023
Dynamic subspace estimation, or subspace tracking, is a fundamental problem in statistical signal processing and machine learning. This paper considers a geodesic model for time-varying subspaces. The natural objective function for this model is non-convex. We propose a novel algorithm for minimizing this objective and estimating the parameters of the model from data with Grassmannian-constrained optimization. We show that with this algorithm, the objective is monotonically n...
April 9, 2020
In this paper, we propose a spectral method for deriving functions that are jointly smooth on multiple observed manifolds. This allows us to register measurements of the same phenomenon by heterogeneous sensors, and to reject sensor-specific noise. Our method is unsupervised and primarily consists of two steps. First, using kernels, we obtain a subspace spanning smooth functions on each separate manifold. Then, we apply a spectral method to the obtained subspaces and discover...
January 14, 2015
Riemannian geometry has been applied to Brain Computer Interface (BCI) for brain signals classification yielding promising results. Studying electroencephalographic (EEG) signals from their associated covariance matrices allows a mitigation of common sources of variability (electronic, electrical, biological) by constructing a representation which is invariant to these perturbations. While working in Euclidean space with covariance matrices is known to be error-prone, one mig...