January 9, 2007
Similar papers 5
April 5, 2017
This paper proposes two low-complexity iterative algorithms to compute the capacity of a single-user multiple-input multiple-output channel with per-antenna power constraint. The first method results from manipulating the optimality conditions of the considered problem and applying fixed-point iteration. In the second approach, we transform the considered problem into a minimax optimization program using the well-known MAC- BC duality, and then solve it by a novel alternating...
August 4, 2015
In this paper, we investigate the downlink multiple-input-multipleoutput (MIMO) broadcast channels in which a base transceiver station (BTS) broadcasts multiple data streams to K MIMO mobile stations (MSs) simultaneously. In order to maximize the weighted sum-rate (WSR) of the system subject to the transmitted power constraint, the design problem is to find the pre-coding matrices at BTS and the decoding matrices at MSs. However, such a design problem is typically a nonlinear...
February 28, 2023
This paper focuses on the fundamental problem of maximizing the achievable weighted sum rate (WSR) at information receivers (IRs) in an intelligent reflecting surface (IRS) assisted simultaneous wireless information and power transfer system under a multiple-input multiple-output (SWIPT-MIMO) setting, subject to a quality-of-service (QoS) constraint at the energy receivers (ERs). Notably, due to the coupling between the transmit precoding matrix and the passive beamforming ve...
April 7, 2020
This paper investigates a new class of non-convex optimization, which provides a unified framework for linear precoding in single/multi-user multiple-input multiple-output (MIMO) channels with arbitrary input distributions. The new optimization is called generalized quadratic matrix programming (GQMP). Due to the nondeterministic polynomial time (NP)-hardness of GQMP problems, instead of seeking globally optimal solutions, we propose an efficient algorithm which is guaranteed...
June 3, 2024
We introduce a learning-based approach to optimize a joint constellation for a multi-user MIMO broadcast channel ($T$ Tx antennas, $K$ users, each with $R$ Rx antennas), with perfect channel knowledge. The aim of the optimizer (MAX-MIN) is to maximize the minimum mutual information between the transmitter and each receiver, under a sum-power constraint. The proposed optimization method do neither impose the transmitter to use superposition coding (SC) or any other linear prec...
February 23, 2021
In this paper, we propose an iterative algorithm to address the nonconvex multi-group multicast beamforming problem with quality-of-service constraints and per-antenna power constraints. We formulate a convex relaxation of the problem as a semidefinite program in a real Hilbert space, which allows us to approximate a point in the feasible set by iteratively applying a bounded perturbation resilient fixed-point mapping. Inspired by the superiorization methodology, we use this ...
March 2, 2018
This paper considers the (NP-)hard problem of joint multicast beamforming and antenna selection. Prior work has focused on using Semi-Definite relaxation (SDR) techniques in an attempt to obtain a high quality sub-optimal solution. However, SDR suffers from the drawback of having high computational complexity, as SDR lifts the problem to higher dimensional space, effectively squaring the number of variables. This paper proposes a high performance, low complexity Successive Co...
June 27, 2016
We solve a sum rate maximization problem of full-duplex (FD) multiuser multiple-input multiple-output (MU-MIMO) systems. Since additional self-interference (SI) in the uplink channel and co-channel interference (CCI) in the downlink channel are coupled in FD communication, the downlink and uplink multiuser beamforming vectors are required to be jointly designed. However, the joint optimization problem is non-convex and hard to solve due to the coupled effect. To properly addr...
July 6, 2010
We take two new approaches to design efficient algorithms for transmitter optimization under rate constraints, to guarantee the Quality of Service in general MIMO interference networks, which is a combination of multiple interfering broadcast channels (BC) and multiaccess channels (MAC) and is named B-MAC Networks. Two related optimization problems, maximizing the minimum of weighted rates under a sum-power constraint and minimizing the sum-power under rate constraints, are c...
June 12, 2009
A Dirty Paper Coding (DPC) based transmission scheme for the Gaussian multiple-input multiple-output (MIMO) cognitive radio channel (CRC) is studied when there is imperfect and perfect channel knowledge at the transmitters (CSIT) and the receivers, respectively. In particular, the problem of optimizing the sum-rate of the MIMO CRC over the transmit covariance matrices is dealt with. Such an optimization, under the DPC-based transmission strategy, needs to be performed jointly...