February 25, 2007
Similar papers 3
September 21, 2019
This work proposes an approach for latent-dynamics learning that exactly enforces physical conservation laws. The method comprises two steps. First, the method computes a low-dimensional embedding of the high-dimensional dynamical-system state using deep convolutional autoencoders. This defines a low-dimensional nonlinear manifold on which the state is subsequently enforced to evolve. Second, the method defines a latent-dynamics model that associates with the solution to a co...
March 15, 2009
We show how the Equation-Free approach for multi-scale computations can be exploited to systematically study the dynamics of neural interactions on a random regular connected graph under a pairwise representation perspective. Using an individual-based microscopic simulator as a black box coarse-grained timestepper and with the aid of simulated annealing we compute the coarse-grained equilibrium bifurcation diagram and analyze the stability of the stationary states sidesteppin...
February 24, 2022
We introduce a machine-learning framework named statistics-informed neural network (SINN) for learning stochastic dynamics from data. This new architecture was theoretically inspired by a universal approximation theorem for stochastic systems, which we introduce in this paper, and the projection-operator formalism for stochastic modeling. We devise mechanisms for training the neural network model to reproduce the correct \emph{statistical} behavior of a target stochastic proc...
April 9, 2020
We develop a method to learn physical systems from data that employs feedforward neural networks and whose predictions comply with the first and second principles of thermodynamics. The method employs a minimum amount of data by enforcing the metriplectic structure of dissipative Hamiltonian systems in the form of the so-called General Equation for the Non-Equilibrium Reversible-Irreversible Coupling, GENERIC [M. Grmela and H.C Oettinger (1997). Dynamics and thermodynamics of...
November 27, 2023
Dynamics play a critical role in computation. The principled evolution of states over time enables both biological and artificial networks to represent and integrate information to make decisions. In the past few decades, significant multidisciplinary progress has been made in bridging the gap between how we understand biological versus artificial computation, including how insights gained from one can translate to the other. Research has revealed that neurobiology is a key d...
February 5, 2015
In a manner similar to the molecular chaos that underlies the stable thermodynamics of gases, neuronal system may exhibit microscopic instability in individual neuronal dynamics while a macroscopic order of the entire population possibly remains stable. In this study, we analyze the microscopic stability of a network of neurons whose macroscopic activity obeys stable dynamics, expressing either monostable, bistable, or periodic state. We reveal that the network exhibits a var...
September 27, 2023
Consider an unknown nonlinear dynamical system that is known to be dissipative. The objective of this paper is to learn a neural dynamical model that approximates this system, while preserving the dissipativity property in the model. In general, imposing dissipativity constraints during neural network training is a hard problem for which no known techniques exist. In this work, we address the problem of learning a dissipative neural dynamical system model in two stages. First...
November 2, 2021
Dynamical systems see widespread use in natural sciences like physics, biology, chemistry, as well as engineering disciplines such as circuit analysis, computational fluid dynamics, and control. For simple systems, the differential equations governing the dynamics can be derived by applying fundamental physical laws. However, for more complex systems, this approach becomes exceedingly difficult. Data-driven modeling is an alternative paradigm that seeks to learn an approximat...
September 28, 2018
We present a model for the time evolution of network architectures based on dynamical systems. We show that the evolution of the existence of a connection in a network can be described as a stochastic non-markovian telegraphic signal (NMTS). Such signal is formulated in two ways: as an algorithm and as the result of a system of differential equations. The autonomous learning conjecture [Phys. Rev. E \textbf{90},030901(R) (2014)] is implemented in the proposed dynamics. As a r...
May 31, 2019
A thermodynamically motivated neural network model is described that self-organizes to transport charge associated with internal and external potentials while in contact with a thermal reservoir. The model integrates techniques for rapid, large-scale, reversible, conservative equilibration of node states and slow, small-scale, irreversible, dissipative adaptation of the edge states as a means to create multiscale order. All interactions in the network are local and the networ...