September 7, 2001
Gravitational waves from binary neutron stars in quasiequilibrium circular orbits are computed using an approximate method which we propose in this paper. In the first step of this method, we prepare general relativistic irrotational binary neutron stars in a quasiequilibrium circular orbit, neglecting gravitational waves. We adopt the so-called conformal flatness approximation for a three-metric to obtain the quasiequilibrium states in this paper. In the second step, we compute gravitational waves, solving linear perturbation equations in the background spacetime of the quasiequilibrium states. Comparing numerical results with post Newtonian waveforms and luminosity of gravitational waves from two point masses in circular orbits, we demonstrate that this method can produce accurate waveforms and luminosity of gravitational waves. It is shown that the effects of tidal deformation of neutron stars and strong general relativistic gravity modify the post Newtonian results for compact binary neutron stars in close orbits. We indicate that the magnitude of a systematic error in quasiequilibrium states associated with the conformal flatness approximation is fairly large for close and compact binary neutron stars. Several formulations for improving the accuracy of quasiequilibrium states are proposed.
Similar papers 1
November 25, 2005
Equilibria of binary neutron stars in close circular orbits are computed numerically in a waveless formulation: The full Einstein-relativistic-Euler system is solved on an initial hypersurface to obtain an asymptotically flat form of the 4-metric and an extrinsic curvature whose time derivative vanishes in a comoving frame. Two independent numerical codes are developed, and solution sequences that model inspiraling binary neutron stars during the final several orbits are succ...
January 7, 2016
The spatially conformally flat approximation (CFA) is a viable method to deduce initial conditions for the subsequent evolution of binary neutron stars employing the full Einstein equations. Here we review the status of the original formulation of the CFA for the general relativistic hydrodynamic initial conditions of binary neutron stars. We illustrate the stability of the conformally flat condition on the hydrodynamics by numerically evolving ~100 quasi-circular orbits. We ...
March 8, 2021
The first detection of gravitational waves from the binary neutron star merger GW170817 by the LIGO-Virgo Collaboration has provided fundamental new insights into the astrophysical site for r-process nucleosynthesis and on the nature of dense neutron-star matter. The detected gravitational wave signal depends upon the tidal distortion of the neutron stars as they approach merger. We report on relativistic numerical simulations of the approach to binary merger in the conformal...
September 18, 2015
Gravitational waves from binary neutron star (BNS) and black hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challengi...
April 8, 1997
We perform fully relativistic calculations of binary neutron stars in quasi-equilibrium circular orbits. We integrate Einstein's equations together with the relativistic equation of hydrostatic equilibrium to solve the initial value problem for equal-mass binaries of arbitrary separation. We construct sequences of constant rest mass and identify the innermost stable circular orbit and its angular velocity. We find that the quasi-equilibrium maximum allowed mass of a neutron s...
August 20, 1999
We propose a new numerical method to compute quasi-equilibrium sequences of general relativistic irrotational binary neutron star systems. It is a good approximation to assume that (1) the binary star system is irrotational, i.e. the vorticity of the flow field inside component stars vanishes everywhere (irrotational flow), and (2) the binary star system is in quasi-equilibrium, for an inspiraling binary neutron star system just before the coalescence as a result of gravitati...
March 17, 1994
Inspiralling binary systems of neutron stars or black holes are promising sources of gravitational radiation detectable by large-scale laser interferometric gravitational observatories, such as the US LIGO and Italian-French VIRGO projects. Accurate theoretical gravitational-waveform templates will be needed to carry out matched filtering data analysis of the detectors' output once they are on the air by the end of this decade. For all but the final, strongly general relativi...
January 19, 2007
We construct quasiequilibrium sequences of black hole-neutron star binaries in general relativity. We solve Einstein's constraint equations in the conformal thin-sandwich formalism, subject to black hole boundary conditions imposed on the surface of an excised sphere, together with the relativistic equations of hydrostatic equilibrium. In contrast to our previous calculations we adopt a flat spatial background geometry and do not assume extreme mass ratios. We adopt a Gamma=2...
January 14, 1997
We present a numerical scheme that solves the initial value problem in full general relativity for a binary neutron star in quasi-equilibrium. While Newtonian gravity allows for a strict equilibrium, a relativistic binary system emits gravitational radiation, causing the system to lose energy and slowly spiral inwards. However, since inspiral occurs on a time scale much longer than the orbital period, we can adopt a quasi-equilibrium approximation. In this approximation, we i...
June 22, 1999
We report on numerical results from an independent formalism to describe the quasi-equilibrium structure of nonsynchronous binary neutron stars in general relativity. This is an important independent test of controversial numerical hydrodynamic simulations which suggested that nonsynchronous neutron stars in a close binary can experience compression prior to the last stable circular orbit. We show that, for compact enough stars the interior density increases slightly as irrot...