September 7, 2001
Similar papers 5
October 30, 2013
The coalescence of two neutron stars is an important gravitational wave source for LIGO and other detectors. Numerous studies have considered the precision with which binary parameters (masses, spins, Love numbers) can be measured. Here I consider the accuracy with which these parameters can be determined in the presence of systematic errors due to waveform approximations. These approximations include truncation of the post-Newtonian (PN) series and neglect of neutron star (N...
September 5, 1996
We study how the neutron-star equation of state affects the onset of the dynamical instability in the equations of motion for inspiraling neutron-star binaries near coalescence. A combination of relativistic effects and Newtonian tidal effects cause the stars to begin their final, rapid, and dynamically-unstable plunge to merger when the stars are still well separated and the orbital frequency is $\approx$ 500 cycles/sec (i.e. the gravitational wave frequency is approximately...
July 25, 2015
Information about the last stages of a binary neutron star inspiral and the final merger can be extracted from quasi-equilibrium configurations and dynamical evolutions. In this article, we construct quasi-equilibrium configurations for different spins, eccentricities, mass ratios, compactnesses, and equations of state. For this purpose we employ the SGRID code, which allows us to construct such data in previously inaccessible regions of the parameter space. In particular, we...
September 13, 2006
This paper is devoted to the computation of compact binaries composed of one black hole and one neutron star. The objects are assumed to be on exact circular orbits. Standard 3+1 decomposition of Einstein equations is performed and the conformal flatness approximation is used. The obtained system of elliptic equations is solved by means of multi-domain spectral methods. Results are compared with previous work both in the high mass ratio limit and for one neutron star with ver...
October 22, 1998
We report on general relativistic calculations of quasiequilibrium configurations of binary neutron stars in circular orbits with zero vorticity. These configurations are expected to represent realistic situations as opposed to corotating configurations. The Einstein equations are solved under the assumption of a conformally flat spatial 3-metric (Wilson-Mathews approximation). The velocity field inside the stars is computed by solving an elliptical equation for the velocity ...
September 12, 2018
We identify various contributors of systematic effects in the measurement of the neutron star (NS) tidal deformability and quantify their magnitude for several types of neutron star - black hole (NSBH) binaries. Gravitational waves from NSBH mergers contain information about the components' masses and spins as well as the NS equation of state. Extracting this information requires comparison of the signal in noisy detector data with theoretical templates derived from some comb...
October 26, 2007
We construct new models of black hole-neutron star binaries in quasiequilibrium circular orbits by solving Einstein's constraint equations in the conformal thin-sandwich decomposition together with the relativistic equations of hydrostationary equilibrium. We adopt maximal slicing, assume spatial conformal flatness, and impose equilibrium boundary conditions on an excision surface (i.e., the apparent horizon) to model the black hole. In our previous treatment we adopted a "le...
July 16, 2013
We obtain analytical gravitational waveforms in the frequency-domain for precessing, quasi-circular compact binaries with small spins, applicable, for example, to binary neutron star inspirals. We begin by calculating an analytic solution to the precession equations, obtained by expanding in the dimensionless spin parameters and using multiple-scale analysis to separate timescales. We proceed by analytically computing the Fourier transform of time-domain waveform through the ...
October 4, 2018
The global network of ground-based gravitational-wave detectors (the Advanced LIGO and the Advanced Virgo) is sensitive at the frequency range corresponding to relativistic stellar-mass compact objects. Among the promising types of gravitational-wave sources are binary systems and rotating, deformed neutron stars. I will describe these sources and present predictions of how their observations will contribute to modern astrophysics in the near future.
October 21, 1997
We discuss (3+1) dimensional general relativistic hydrodynamic simulations of close neutron star binary systems. The relativistic field equations are solved at each time slice with a spatial 3-metric chosen to be conformally flat. Against this solution the hydrodynamic variables and gravitational radiation are allowed to respond. We have studied four physical processes which occur as the stars approach merger. These include: 1) the relaxation to a hydrodynamic state of almost...