July 16, 2002
We consider the problem of searching for gravitational waves emitted during the inspiral phase of binary systems when the orbital plane precesses due to relativistic spin-orbit coupling. Such effect takes place when the spins of the binary members are misaligned with respect to the orbital angular momentum. As a first step we assess the importance of precession specifically for the first-generation of LIGO detectors. We investigate the extent of the signal-to-noise ratio reduction and, hence, detection rate that occurs when precession effects are not accounted for in the template waveforms. We restrict our analysis to binary systems that undergo the so-called simple precession and have a total mass close to 10 solar mass. We find that for binary systems with rather high mass ratios (e.g., a 1.4 solar mass neutron star and a 10 solar mass black hole) the detection rate can decrease by almost an order of magnitude. Current astrophysical estimates of the rate of binary inspiral events suggest that LIGO could detect at most a few events per year, and therefore the reduction of the detection rate even by a factor of a few is critical. In the second part of our analysis, we examine whether the effect of precession could be included in the templates by capturing the main features of the phase modulation through a small number of extra parameters. Specifically we examine and tested for the first time the 3-parameter family suggested by Apostolatos. We find that, even though these ``mimic'' templates improve the detection rate, they are still inadequate in recovering the signal-to-noise ratio at the desired level. We conclude that a more complex template family is needed in the near future, still maintaining the number of additional parameters as small as possible in order to reduce the computational costs.
Similar papers 1
November 22, 2002
In a recent investigation of the effects of precession on the anticipated detection of gravitational-wave inspiral signals from compact object binaries with moderate total masses, we found that (i) if precession is ignored, the inspiral detection rate can decrease by almost a factor of 10, and (ii) previously proposed ``mimic'' templates cannot improve the detection rate significantly (by more than a factor of 2). In this paper we propose a new family of templates that can im...
December 18, 2003
Relativistic spin-orbit and spin-spin couplings has been shown to modify the gravitational waveforms expected from inspiraling binaries with a black hole and a neutron star. As a result inspiral signals may be missed due to significant losses in signal-to-noise ratio, if precession effects are ignored in gravitational-wave searches. We examine the sensitivity of the anticipated loss of signal-to-noise ratio on two factors: the accuracy of the precessing waveforms adopted as t...
July 12, 2013
The first direct detection of neutron-star-black-hole binaries will likely be made with gravitational-wave observatories. Advanced LIGO and Advanced Virgo will be able to observe neutron-star-black-hole mergers at a maximum distance of 900Mpc. To acheive this sensitivity, gravitational-wave searches will rely on using a bank of filter waveforms that accurately model the expected gravitational-wave signal. The angular momentum of the black hole is expected to be comparable to ...
December 12, 2007
We report on the methods and results of the first dedicated search for gravitational waves emitted during the inspiral of compact binaries with spinning component bodies. We analyze 788 hours of data collected during the third science run (S3) of the LIGO detectors. We searched for binary systems using a detection template family designed specially to capture the effects of the spin-induced precession of the orbital plane. We present details of the techniques developed to ena...
July 6, 2011
This paper presents a post-Newtonian (PN) template family of gravitational waveforms from inspiralling compact binaries with non-precessing spins, where the spin effects are described by a single "reduced-spin" parameter. This template family, which reparametrizes all the spin-dependent PN terms in terms of the leading-order (1.5PN) spin-orbit coupling term \emph{in an approximate way}, has very high overlaps (fitting factor > 0.99) with non-precessing binaries with arbitrary...
October 6, 2003
The detection of the gravitational waves (GWs) emitted by precessing binaries of spinning compact objects is complicated by the large number of parameters (such as the magnitudes and initial directions of the spins, and the position and orientation of the binary with respect to the detector) that are required to model accurately the precession-induced modulations of the GW signal. In this paper we describe a fast matched-filtering search scheme for precessing binaries, and we...
May 17, 2004
The gravitational waveforms emitted during the adiabatic inspiral of precessing binaries with two spinning compact bodies of comparable masses, evaluated within the post-Newtonian approximation, can be reproduced rather accurately by the waveforms obtained by setting one of the two spins to zero, at least for the purpose of detection by ground-based gravitational-wave interferometers. Here we propose to use this quasi-physical family of single-spin templates to search for the...
November 26, 2002
Black-hole (BH) binaries with single-BH masses m=5--20 Msun, moving on quasicircular orbits, are among the most promising sources for first-generation ground-based gravitational-wave (GW) detectors. Until now, the development of data-analysis techniques to detect GWs from these sources has been focused mostly on nonspinning BHs. The data-analysis problem for the spinning case is complicated by the necessity to model the precession-induced modulations of the GW signal, and by ...
December 7, 2016
Gravitational wave templates used in current searches for binary black holes omit the effects of precession of the orbital plane and higher order modes. While this omission seems not to impact the detection of sources having mass ratios and spins similar to those of GW150914, even for total masses $M > 200M_{\odot}$; we show that it can cause large fractional losses of sensitive volume for binaries with mass ratio $q \geq 4$ and $M>100M_{\odot}$, measured the detector frame. ...
July 4, 2022
Gravitational waves from precessing binary black holes exhibit new features that are absent in non-precessionary systems. All current waveform models take into account only the modulation of the signal due to precession. In this letter, we find that this effect has its own signature, by gravitational emission of a short and transient signal, or burst. The frequency of the burst is comparable to that of the late stage of the inspiral. We show that under certain conditions, thi...