May 14, 2004
Similar papers 5
April 23, 1999
We present a numerical study of the hydrodynamics in the final stages of inspiral of a black hole-neutron star binary, when the binary separation becomes comparable to the stellar radius. We use a Newtonian three-dimensional Smooth Particle Hydrodynamics (SPH) code, and model the neutron star with a soft (adiabatic index Gamma=5/3) polytropic equation of state and the black hole as a Newtonian point mass which accretes matter via an absorbing boundary at the Schwarzschild rad...
August 12, 1998
We propose a new numerical method to calculate irrotational binary systems composed of compressible gaseous stars in Newtonian gravity. Assuming irrotationality, i.e. vanishing of the vorticity vector everywhere in the star in the inertial frame, we can introduce the velocity potential for the flow field. Using this velocity potential we can derive a set of basic equations for stationary states which consist of (i) the generalized Bernoulli equation, (ii) the Poisson equation...
April 25, 2001
We perform 3D numerical simulations for merger of equal mass binary neutron stars in full general relativity preparing irrotational binary neutron stars in a quasiequilibrium state as initial conditions. Simulations have been carried out for a wide range of stiffness of equations of state and compactness of neutron stars, paying particular attention to the final products and gravitational waves. We take a fixed uniform grid in Cartesian coordinates with typical grid size $(29...
July 9, 2004
Two relations, the virial relation $M_{\rm ADM}=M_{\rm K}$ and the first law in the form $\delta M_{\rm ADM}=\Omega \delta J$, should be satisfied by a solution and a sequence of solutions describing binary compact objects in quasiequilibrium circular orbits. Here, $M_{\rm ADM}$, $M_{\rm K}$, $J$, and $\Omega$ are the ADM mass, Komar mass, angular momentum, and orbital angular velocity, respectively. $\delta$ denotes an Eulerian variation. These two conditions restrict the al...
November 9, 2007
We systematically perform the merger simulation of black hole-neutron star (BH-NS) binaries in full general relativity, focusing on the case that the NS is tidally disrupted. We prepare BH-NS binaries in a quasicircular orbit as the initial condition in which the BH is modeled by a nonspinning moving puncture. For modeling the NS, we adopt the $\Gamma$-law equation of state with $\Gamma=2$ and the irrotational velocity field. We change the BH mass in the range $M_{\rm BH} \ap...
January 27, 2003
An approach to general relativity based on conformal flatness and quasiequilibrium (CFQE) assumptions has played an important role in the study of the inspiral dynamics and in providing initial data for fully general relativistic numerical simulations of coalescing compact binaries. However, the regime of validity of the approach has never been established. To this end, we develop an analysis that determines the violation of the CFQE approximation in the evolution of the bina...
October 12, 2021
We review the current status of general relativistic studies for coalescences of black hole--neutron star binaries. First, high-precision computations of black hole--neutron star binaries in quasiequilibrium circular orbits are summarized, focusing on the quasiequilibrium sequences and the mass-shedding limit. Next, the current status of numerical-relativity simulations for the merger of black hole--neutron star binaries is described. We summarize our understanding for the me...
March 25, 1998
Neutron stars in binary orbit emit gravitational waves and spiral slowly together. During this inspiral, they are expected to have very little vorticity. It is in fact a good approximation to treat the system as having zero vorticity, i.e., as irrotational. Because the orbital period is much shorter than the radiation reaction time scale, it is also an excellent approximation to treat the system as evolving through a sequence of equilibrium states, in each of which the gravit...
March 2, 2004
We have designed and tested a new relativistic Lagrangian hydrodynamics code, which treats gravity in the conformally flat approximation to general relativity. We have tested the resulting code extensively, finding that it performs well for calculations of equilibrium single-star models, collapsing relativistic dust clouds, and quasi-circular orbits of equilibrium solutions. By adding in a radiation reaction treatment, we compute the full evolution of a coalescing binary neut...
November 6, 2011
We report work towards a relativistic formulation for modeling strongly magnetized neutron stars, rotating or in a close circular orbit around another neutron star or black hole, under the approximations of helical symmetry and ideal MHD. The quasi-stationary evolution is governed by the first law of thermodynamics for helically symmetric systems, which is generalized to include magnetic fields. The formulation involves an iterative scheme for solving the Einstein-Maxwell and...