November 16, 2012
We extend our investigation of the IR effects on the local dynamics of matter fields in quantum gravity. Specifically we clarify how the IR effects depend on the change of the quantization scheme: different parametrization of the metric and the matter field redefinition. Conformal invariance implies effective Lorentz invariance of the matter system in de Sitter space. An arbitrary choice of the parametrization of the metric and the matter field redefinition does not preserve ...
April 3, 2018
In this paper, we generalize the simplified Dark Matter models with graviton mediator to the curved space-time, in particular to the de Sitter space. We obtain the generating functional of the Green's functions in the Euclidean de Sitter space for the covariant free gravitons. We determine the generating functional of the interacting theory between Dark Matter particles and the covariant gravitons. Also, we calculate explicitly the 2-point and 3-point interacting Green's func...
January 24, 2008
In this article, we clarify the link between the conformal (i.e. Weyl) correspondence from the Minkowski space to the de Sitter space and the conformal (i.e. SO(2,$d$)) invariance of the conformal scalar field on both spaces. We exhibit the realization on de Sitter space of the massless scalar representation of SO$(2,d)$. It is obtained from the corresponding representation in Minkowski space through an intertwining operator inherited from the Weyl relation between the two sp...
April 2, 2017
Gravitational waves are investigated in Intrinsic Time Geometrodynamics. This theory has a non-vanishing physical Hamiltonian generating intrinsic time development in our expanding universe, and four-covariance is explicitly broken by higher spatial curvature terms. Linearization of Hamilton's equations about the de Sitter solution produces transverse traceless excitations, with the physics of gravitational waves in Einstein's General Relativity recovered in the low curvature...
June 7, 2017
In this paper, considering the linearized Einstein equation with a two-parameter family of linear covariant gauges in de Sitter spacetime, we examine possible vacuum states for the gravitons field with respect to invariance under the de Sitter group $SO_0(1,4)$. Our calculations explicitly reveal that there exists no natural de Sitter-invariant vacuum state (the Euclidean state) for the gravitons field. Indeed, on the foundation of a rigorous group theoretical reasoning, we p...
March 18, 2011
The dispersion relation of de Sitter special relativity is obtained in a simple and compact form, which is formally similar to the dispersion relation of ordinary special relativity. It is manifestly invariant under change of scale of mass, energy and momentum, and can thus be applied at any energy scale. When applied to the universe as a whole, the de Sitter special relativity is found to provide a natural scenario for the existence of an evolving cosmological term, and agre...
April 28, 2006
Backreactions are considered in a de Sitter spacetime whose cosmological constant is generated by the potential of scalar field. The leading order gravitational effect of nonlinear matter fluctuations is analyzed and it is found that the initial value problem for the perturbed Einstein equations possesses linearization instabilities. We show that these linearization instabilities can be avoided by assuming strict de Sitter invariance of the quantum states of the linearized fl...
December 4, 2013
The paper deals with the calculation of the gravitational entropy in the context of teleparallel gravity for de Sitter space-time. In such a theory it is possible to define gravitational energy and pressure, thus we use those expressions to construct the gravitational entropy. We interpret the cosmological constant as the temperature and write the first law of thermodynamics. In the limit $\Lambda\ll 1$ we find that the entropy is proportional to volume and $\Delta S\geq 0$.
November 18, 2023
We calculate the effective mass of gravitational perturbations induced by the interaction of the classical gravitational field with quantum matter in the background of the Poincar\'e patch of de Sitter space. Using the Schwinger-Keldysh diagrammatic technique, the one-loop effective action is calculated and it is shown that the graviton does not acquire mass for the most symmetric Bunch-Davies state. However, we have shown that even in this case, there is a nontrivial modific...
December 26, 2022
Earlier constructed a simple nonlocal de Sitter gravity model has a cosmological solution in a very good agreement with astronomical observations. In this paper, we continue the investigation of the nonlocal de Sitter model of gravity, focusing on finding an appropriate solution for the Schwarzschild-de Sitter metric. We succeeded to solve the equations of motion in a certain approximation. The obtained approximate solution is of particular interest for examining the possible...