July 3, 2006
Similar papers 5
August 30, 2007
Coalescing black-hole binaries are expected to be the strongest sources of gravitational waves for ground-based interferometers as well as the space-based interferometer LISA. Recent progress in numerical relativity now makes it possible to calculate the waveforms from the strong-field dynamical merger and is revolutionizing our understanding of these systems. We review these dramatic developments, emphasizing applications to issues in gravitational wave observations. These n...
May 14, 2018
Now that LIGO has revealed the existence of a large number of binary black holes, identifying their origin becomes an important challenge. They might originate in more isolated regions of the galaxy or alternatively they might reside in dense environments such as galactic centers or globular clusters. In the latter case, their center of mass motion as well as their orbital parameters should lead to observable changes in the waveforms, which would reflect their gravitational i...
April 9, 2021
We present the FastEMRIWaveforms (FEW) package, a collection of tools to build and analyze extreme mass ratio inspiral (EMRI) waveforms. Here, we expand on the Physical Review Letter that introduced the first fast and accurate fully-relativistic EMRI waveform template model. We discuss the construction of the overall framework; constituent modules; and the general methods used to accelerate EMRI waveforms. Because the fully relativistic FEW model waveforms are for now limited...
August 11, 2005
The capture and inspiral of compact stellar masses into massive black holes is an important source of low-frequency gravitational waves (with frequencies of ~1-100mHz), such as those that might be detected by the planned Laser Interferometer Space Antenna (LISA). Simulations of stellar clusters designed to study this problem typically rely on simple treatments of the black hole encounter which neglect some important features of orbits around black holes, such as the minimum r...
January 12, 2021
An extreme mass ratio inspiral takes place when a compact stellar object is inspiraling into a supermassive black hole due to gravitational radiation reaction. Gravitational waves (GWs) from this system can be calculated using the Teukolsky equation (TE). In our case, we compute the asymptotic GW fluxes of a spinning body orbiting a Kerr black hole by solving numerically the TE both in time and frequency domain. Our ultimate goal is to produce GW templates for space-based det...
July 28, 2000
Results are presented from high-precision computations of the orbital evolution and emitted gravitational waves for a stellar-mass object spiraling into a massive black hole in a slowly shrinking, circular, equatorial orbit. The focus of these computations is inspiral near the innermost stable circular orbit (isco)---more particularly, on orbits for which the angular velocity Omega is 0.03 < Omega/Omega_{isco} < 1. The computations are based on the Teukolsky-Sasaki-Nakamura f...
December 16, 2024
We analyze a rotating regular black hole spacetime with an asymptotically Minkowski core, focusing on extreme mass-ratio inspiral (EMRIs) where a stellar-mass object inspirals a supermassive black hole under consideration. Such spacetimes are also called Kerr-like spacetimes, which motivate the investigation of black holes beyond general relativity and the test of the no-hair theorem. In the present article, we consider the eccentric equatorial motion of an inspiralling objec...
February 28, 2009
This is a whitepaper submitted to the 2010 Astronomy Decadal Review process, addressing the potential tests of gravity theory that could be made by observations of gravitational waves in the milliHertz frequency band by the proposed ESA-NASA gravitational wave observatory LISA. A key issue is that observations in this band of binary systems consisting of black holes offer very clean tests with high signal-to-noise ratios. Gravitational waves would probe nonlinear gravity and ...
March 4, 2020
Gravitational waves from the explosive merger of distant black holes are encoded with details regarding the complex extreme-gravity spacetime present at their source. Famously described by the Kerr spacetime metric for rotating black holes in general relativity, what if effects beyond this theory are present? One way to efficiently test this hypothesis is to first obtain a metric which parametrically deviates from the Kerr metric in a model-independent way. Given such a metri...
March 24, 2024
There is strong observational evidence that almost every large galaxy has a supermassive black hole at its center. It is of fundamental importance to know whether such black holes are described by the standard Kerr solution in General Relativity (GR) or by another black hole solution. An interesting alternative is the so-called disformal Kerr black holes which exist within the framework of degenerate higher-order scalar-tensor (DHOST) theories of gravity. The departure from t...