February 25, 1997
The ``warp drive'' metric recently presented by Alcubierre has the problem that an observer at the center of the warp bubble is causally separated from the outer edge of the bubble wall. Hence such an observer can neither create a warp bubble on demand nor control one once it has been created. In addition, such a bubble requires negative energy densities. One might hope that elimination of the first problem might ameliorate the second as well. We analyze and generalize a metric, originally proposed by Krasnikov for two spacetime dimensions, which does not suffer from the first difficulty. As a consequence, the Krasnikov metric has the interesting property that although the time for a one-way trip to a distant star cannot be shortened, the time for a round trip, as measured by clocks on Earth, can be made arbitrarily short. In our four dimensional extension of this metric, a ``tube'' is constructed along the path of an outbound spaceship, which connects the Earth and the star. Inside the tube spacetime is flat, but the light cones are opened out so as to allow superluminal travel in one direction. We show that, although a single Krasnikov tube does not involve closed timelike curves, a time machine can be constructed with a system of two non-overlapping tubes. Furthermore, it is demonstrated that Krasnikov tubes, like warp bubbles and traversable wormholes, also involve unphysically thin layers of negative energy density, as well as large total negative energies, and therefore probably cannot be realized in practice.
Similar papers 1
March 9, 2021
"Warp drive" spacetimes and wormhole geometries are useful as "gedanken-experiments" that force us to confront the foundations of general relativity, and among other issues, to precisely formulate the notion of "superluminal" travel and communication. Here we will consider the basic definition and properties of warp drive spacetimes. In particular, we will discuss the violation of the energy conditions associated with these spacetimes, as well as some other interesting proper...
April 9, 2002
Recent solutions to the Einstein Field Equations involving negative energy densities, i.e., matter violating the weak-energy-condition, have been obtained, namely traversable wormholes, the Alcubierre warp drive and the Krasnikov tube. These solutions are related to superluminal travel, although locally the speed of light is not surpassed. It is difficult to define faster-than-light travel in generic space-times, and one can construct metrics which apparently allow superlumin...
November 16, 2005
A design of a configuration for violation of the averaged null energy condition (ANEC) and consequently other classic energy conditions (CECs), is presented. The methods of producing effective exotic matter (EM) for a traversable wormhole (TW) are discussed. Also, the approaches of less necessity of TWs to EM are considered. The result is, TW and similar structures; i.e., warp drive (WD) and Krasnikov tube are not just theoretical subjects for teaching general relativity (GR)...
November 19, 2023
Warp-drives are solutions of general relativity widely considered unphysical due to high negative energy requirements. While the majority of the literature has focused on macroscopic solutions towards the goal of interstellar travel, in this work we explore what happens in the small radius limit. In this regime the magnitude of the total negative energy requirements gets smaller than the energy contained in a lightning bolt, more than 70 orders of magnitude less than the orig...
February 12, 2021
The Alcubierre warp drive is an exotic solution in general relativity. It allows for superluminal travel at the cost of enormous amounts of matter with negative mass density. For this reason, the Alcubierre warp drive has been widely considered unphysical. In this study, we develop a model of a general warp drive spacetime in classical relativity that encloses all existing warp drive definitions and allows for new metrics without the most serious issues present in the Alcubie...
July 15, 2002
A class of spacetimes (comprising the Alcubierre bubble, Krasnikov tube, and a certain type of wormholes) is considered that admits `superluminal travel' in a strictly defined sense. Such spacetimes (they are called `shortcuts' in this paper) were suspected to be impossible because calculations based on `quantum inequalities' suggest that their existence would involve Planck-scale energy densities and hence unphysically large values of the `total amount of negative energy' E_...
May 21, 1999
I show how a minor modification of the Alcubierre geometry can dramatically improve the total energy requirements for a `warp bubble' that can be used to transport macroscopic objects. A spacetime is presented for which the total negative mass needed is of the order of a few solar masses, accompanied by a comparable amount of positive energy. This puts the warp drive in the mass scale of large traversable wormholes. The new geometry satisfies the quantum inequality concerning...
October 24, 2007
The General Theory of Relativity has been an extremely successful theory, with a well established experimental footing, at least for weak gravitational fields. Its predictions range from the existence of black holes, gravitational radiation to the cosmological models, predicting a primordial beginning, namely the big-bang. All these solutions have been obtained by first considering a plausible distribution of matter, and through the Einstein field equation, the spacetime metr...
July 7, 1999
In this paper the problem of the quantum stability of the two-dimensional warp drive spacetime moving with an apparent faster than light velocity is considered. We regard as a maximum extension beyond the event horizon of that spacetime its embedding in a three-dimensional Minkowskian space with the topology of the corresponding Misner space. It is obtained that the interior of the spaceship bubble becomes then a multiply connected nonchronal region with closed timelike curve...
May 1, 1998
I investigate the relationship between faster-than-light travel and weak-energy-condition violation, i.e., negative energy densities. In a general spacetime it is difficult to define faster-than-light travel, and I give an example of a metric which appears to allow superluminal travel, but in fact is just flat space. To avoid such difficulties, I propose a definition of superluminal travel which requires that the path to be traveled reach a destination surface at an earlier t...