April 22, 1997
We develop and apply a fully covariant 1+3 electromagnetic analogy for gravity. The free gravitational field is covariantly characterized by the Weyl gravito-electric and gravito-magnetic spatial tensor fields, whose dynamical equations are the Bianchi identities. Using a covariant generalization of spatial vector algebra and calculus to spatial tensor fields, we exhibit the covariant analogy between the tensor Bianchi equations and the vector Maxwell equations. We identify gravitational source terms, couplings and potentials with and without electromagnetic analogues. The nonlinear vacuum Bianchi equations are shown to be invariant under covariant spatial duality rotation of the gravito-electric and gravito-magnetic tensor fields. We construct the super-energy density and super-Poynting vector of the gravitational field as natural U(1) group invariants, and derive their super-energy conservation equation. A covariant approach to gravito-electric/magnetic monopoles is also presented.
Similar papers 1
June 26, 2022
The long-range gravitational terms associated with tidal forces, frame-dragging effects, and gravitational waves are described by the Weyl conformal tensor, the traceless part of the Riemann curvature that is not locally affected by the matter field. The Ricci and Bianchi identities provide a set of dynamical and kinematic equations governing the matter coupling and evolution of the electric and magnetic parts of the Weyl tensor, so-called gravitoelectric and gravitomagnetic ...
July 17, 2008
We develop a theoretical framework that allows us to compare electromagnetism and gravitation in a fully covariant way. This new scenario does not rely on any kind of approximation nor associate objects with different operational meaning as it's sometime done in the literature. We construct the electromagnetic analogue to the Riemann and Weyl tensors and develop the equations of motion for these objects. In particular, we are able to identify precisely how and in what conditi...
July 2, 2012
We reexamine and further develop different gravito-electromagnetic (GEM) analogies found in the literature, and clarify the connection between them. Special emphasis is placed in two exact physical analogies: the analogy based on inertial fields from the so-called "1+3 formalism", and the analogy based on tidal tensors. Both are reformulated, extended and generalized. We write in both formalisms the Maxwell and the full exact Einstein field equations with sources, plus the al...
September 9, 2021
From a previous paper where we proposed a description of general relativity within the gravito-electromagnetic limit, we propose an alternative modified gravitational theory. As in the former version, we analyze the vector and tensor equations of motion, the gravitational continuity equation, the conservation of the energy, the energy-momentum tensor, the field tensor, and the constraints concerning these fields. The Lagrangian formulation is also exhibited as an unified and ...
December 7, 2018
This paper describes general relativity at the gravito-electromagnetic precision level as a constrained field theory. In this novel formulation, the gravity field comprises two auxiliary fields, a static matter field and a moving matter field. Equations of motion, continuity equation, energy conservation, field tensor, energy-momentum tensor, constraints and Lagrangian formulation are presented as a simple and unified formulation that can be useful for future research.
July 12, 2016
In this work, we study the magnetic effects of gravity in the framework of special relativity. Imposing covariance of the gravitational force with respect to the Lorentz transformations, we show from a thought experiment that a magnetic-like force must be present whenever two or more bodies are in motion. The exact expression for this gravitomagnetic force is then derived purely from special relativity and the consequences of such a covariant theory are developed. For instanc...
November 10, 2005
The formalism of electric - magnetic duality, first pioneered by Reinich and Wheeler, extends General Relativity to encompass non-Abelian fields. Several energy Tensors T^uv with non-vanishing trace matter are developed solely as a function of the field strength tensor F^uv, including the Euler tensor, and tensors for matter in flux, pressure in flux, and stationary pressure. The spacetime metric g_uv is not only a solution to the second-order Einstein equation based on T^uv,...
October 25, 2016
This work is focused on the theory of Gravitoelectromagnetism (GEM). In the first part of this work we present a brief review of gravitoelectromagnetism, we locate and discuss all the problems which appear in this approach. We also try to avoid these problems by proposing new approaches in which we use the additional degrees of freedom of the gravitational field. In the second part of this work, we review our previous work regarding the construction of a tensorial theory, usi...
December 21, 2006
We propose a new approach to a physical analogy between General Relativity and Electromagnetism, based on tidal tensors of both theories. Using this approach we write a covariant form for the gravitational analogues of the Maxwell equations. The following realisations of the analogy are given. The first one matches linearised gravitational tidal tensors to exact electromagnetic tidal tensors in Minkwoski spacetime. The second one matches exact magnetic gravitational tidal ten...
March 31, 2000
A tensor description of perturbative Einsteinian gravity about an arbitrary background spacetime is developed. By analogy with the covariant laws of electromagnetism in spacetime, gravito-electromagnetic potentials and fields are defined to emulate electromagnetic gauge transformations under substitutions belonging to the gauge symmetry group of perturbative gravitation. These definitions have the advantage that on a flat background, with the aid of a covariantly constant tim...