October 17, 1997
Similar papers 4
June 12, 2014
We revisit the gravitational collapse of spherically symmetric Lema\^itre - Tolman - Bondi (LTB) dust models. A sufficient condition for global visibility of singularity is given. This condition also allows us to extend the condition of local visibility to mass functions which are not Taylor expandable near the centre.
August 30, 2006
We investigate here spherically symmetric gravitational collapse in a spacetime with an arbitrary number of dimensions and with a general {\it type I} matter field, which is a broad class that includes most of the physically reasonable matter forms. We show that given the initial data for matter in terms of the initial density and pressure profiles at an initial surface $t=t_i$ from which the collapse evolves, there exist rest of the initial data functions and classes of solu...
November 28, 2012
We study stability of occurrence of black holes and naked singularities that arise as a final state for a complete gravitational collapse of type I matter field in a spherically symmetric $N$ dimensional spacetime with equation of state $p = k \rho$, $0 \leq k \leq 1$. We prove that for a regular initial data comprising of pressure (or density) profiles at an initial surface $t = t_{i}$, from which the collapse evolves, there exists a large class of the velocity functions and...
May 17, 1996
We investigate the occurrence and nature of naked singularities in the Szekeres space-times. These space-times represent irrotational dust. They do not have any Killing vectors and they are generalisations of the Tolman-Bondi-Lemaitre space-times. It is shown that in these space-times there exist naked singularities that satisfy both the limiting focusing condition and the strong limiting focusing condition. The implications of this result for the cosmic censorship hypothesis...
October 29, 2003
We construct here a special class of perfect fluid collapse models which generalizes the homogeneous dust collapse solution in order to include non-zero pressures and inhomogeneities into evolution. It is shown that a black hole is necessarily generated as end product of continued gravitational collapse, rather than a naked singularity. We examine the nature of the central singularity forming as a result of endless collapse and it is shown that no non-spacelike trajectories c...
July 11, 2007
The complete spectrum of the endstates - naked singularities, or blackholes - of gravitational collapse is analyzed for a wide class of $N$-dimensional spacetimes in spherical symmetry, which includes and generalizes the dust solutions and the case of vanishing radial stresses. The final fate of the collapse is shown to be fully determined by the local behavior of a single scalar function and by the dimension $N$ of the spacetime. In particular, the ``critical'' behavior of t...
January 17, 2012
It is now known that when a massive star collapses under the force of its own gravity, the final fate of such a continual gravitational collapse will be either a black hole or a naked singularity under a wide variety of physically reasonable circumstances within the framework of general theory of relativity. The research of recent years has provided considerable clarity and insight on stellar collapse, black holes and the nature and structure of spacetime singularities. We di...
March 9, 2000
It is known that the gravitational collapse of a dust ball results in naked singularity formation from an initial density profile which is physically reasonable. In this paper, we show that explosive radiation is emitted during the formation process of the naked singularity.
January 20, 1999
We describe a simple method of determining whether the singularity that forms in the spherically symmetric collapse of inhomogeneous dust is naked or covered. This derivation considerably simplifies the analysis given in the earlier literature, while giving the same results as have been obtained before.
February 12, 1999
Non-static, spherically symmetric clusters of counter-rotating particles, of the type first introduced by Einstein, are analysed here. The initial data space can be parameterized in terms of three arbitrary functions, namely; initial density, velocity and angular momentum profiles. The final state of collapse, black hole or naked singularity, turns out to depend on the order of the first non-vanishing derivatives of such functions at the centre. The work extends recent result...