March 14, 2019
The comparison of geometrical properties of black holes with classical thermodynamic variables reveals surprising parallels between the laws of black hole mechanics and the laws of thermodynamics. Since Hawking's discovery that black holes when coupled to quantum matter fields emit radiation at a temperature proportional to their surface gravity, the idea that black holes are genuine thermodynamic objects with a well-defined thermodynamic entropy has become more and more popu...
September 21, 2017
The investigation about the volume of a black hole is closely related to the quantum nature of the black hole. The entropy is a significant concept for this. A recent work by Majhi and Samanta [Phys. Lett. B 770 (2017) 314] after us presented a similar conclusion that the entropy associated with the volume is proportional to the surface area of the black hole, but the proportionality coefficient is different from our earlier result. In this paper, we clarify the difference an...
December 16, 2022
We construct an infinite family of microstates for black holes in Minkowski spacetime which have effective semiclassical descriptions in terms of collapsing dust shells in the black hole interior. Quantum mechanical wormholes cause these states to have exponentially small, but universal, overlaps. We show that these overlaps imply that the microstates span a Hilbert space of log dimension equal to the event horizon area divided by four times the Newton constant, explaining th...
June 10, 2004
There has been substantial interest, as of late, in the quantum-corrected form of the Bekenstein-Hawking black hole entropy. The consensus viewpoint is that the leading-order correction should be a logarithm of the horizon area; however, the value of the logarithmic prefactor remains a point of notable controversy. Very recently, Hod has employed statistical arguments that constrain this prefactor to be a non-negative integer. In the current paper, we invoke some independent ...
April 8, 2004
It is a common belief now that the explanation of the microscopic origin of the Bekenstein-Hawking entropy of black holes should be available in quantum gravity theory, whatever this theory will finally look like. Calculations of the entropy of certain black holes in string theory do support this point of view. In the last few years there also appeared a hope that an understanding of black hole entropy may be possible even without knowing the details of quantum gravity. The t...
July 17, 1998
An elementary introduction is given to the problem of black hole entropy as formulated by Bekenstein and Hawking. The information theoretic basis of Bekenstein's formulation is briefly reviewed and compared with Hawking's approach. The issue of calculating the entropy by actual counting of microstates is taken up next within two currently popular approaches to quantum gravity, viz., string theory and canonical quantum gravity. The treatment of the former assay is confined to ...
September 13, 1995
I review a new (and still tentative) approach to black hole thermodynamics that seeks to explain black hole entropy in terms of microscopic quantum gravitational boundary states induced on the black hole horizon.
January 8, 1998
The entropy of a seven dimensional Schwarzschild black hole of arbitrary large radius is obtained by a mapping onto a near extremal self-dual three-brane whose partition function can be evaluated. The three-brane arises from duality after submitting a neutral blackbrane, from which the Schwarzschild black hole can be obtained by compactification, to an infinite boost in non compact eleven dimensional space-time and then to a Kaluza-Klein compactification. This limit can be de...
July 12, 2019
We calculate the intrinsic entropy of a Schwarzschild black hole in an asymptotically antide Sitter space. The statistical calculation of the entropy is based on a model for particle structure that leads to confinement. The constituents of the particle are distinguishable quasiparticles. The entropy (temperature) is less (greater) than the entropy of a Schwarzschild black hole in an asymptotically flat space. The equilibrium thermodynamic states are described by pure states, ...
January 15, 1994
In this paper the entropy of an eternal Schwarzschild black hole is studied in the limit of infinite black hole mass. The problem is addressed from the point of view of both canonical quantum gravity and superstring theory. The entropy per unit area of a free scalar field propagating in a fixed black hole background is shown to be quadratically divergent near the horizon. It is shown that such quantum corrections to the entropy per unit area are equivalent to the quantum corr...