January 10, 1999
We study the geodesic motions of a test particle around 2+1 dimensional charged black holes. We obtain a class of exact geodesic motions for the massless test particle when the ratio of its energy and angular momentum is given by square root of cosmological constant. The other geodesic motions for both massless and massive test particles are analyzed by use of numerical method.
Similar papers 1
December 28, 2015
This study is purposed to derive the equation of motion for geodesics in vicinity of spacetime of a (2 + 1)-dimensional charged BTZ black hole. In this paper, we solve geodesics for both massive and massless particles in terms of Weierstrass elliptic and Kleinian sigma hyper-elliptic functions. Then we determine different trajectories of motion for particles in terms of conserved energy and angular momentum and also using effective potential.
February 1, 2020
In order to classify and understand the spacetime structure, investigation of the geodesic motion of massive and massless particles is a key tool. So the geodesic equation is a central equation of gravitating systems and the subject of geodesics in the black hole dictionary attracted much attention. In this paper, we give a full description of geodesic motions in three-dimensional spacetime. We investigate the geodesics near charged BTZ black holes and then generalize our pre...
June 16, 2014
We study the timelike geodesics and geodesic deviation for a two-dimensional stringy blackhole spacetime in Schwarzschild gauge. We have analyzed the properties of effective potential along with the structure of the possible orbits for test particles with different settings of blackhole parameters. The exactly solvable geodesic deviation equation is used to obtain corresponding deviation vector. The nature of deviation and tidal force is also examined in view of the behavior ...
May 29, 2016
In the present paper we study the geodesic motion of test particles and light rays in the spacetime of a static charged black hole in $f(R)$ gravity. The complete set of analytic solutions of the geodesic equations in the spacetime of this black hole are presented. The geodesic equations are solved in terms of Weierstrass elliptic $\wp$ function and derivatives of Kleinian $\sigma$ function. With the help of parametric diagrams and effective potentials we analyze the geodesic...
May 1, 2015
We study the evolution of timelike geodesics for two dimensional black hole spacetimes arising in string theory and general theory of relativity by solving the Raychaudhuri equation for expansion scalar as an initial value problem. The possibility of geodesic focusing/defocusing is then examined accordingly with different settings of black hole parameters. In view of the geodesic focusing/defocusing, the critical value of expansion scalar is also calculated in each case. The ...
December 3, 2012
In this article we analyze the geodesics of test particles and light in the five dimensional (charged) doubly spinning black ring spacetime. Apparently it is not possible to separate the Hamilton-Jacobi-equation for (charged) doubly spinning black rings in general, so we concentrate on special cases: null geodesics in the ergosphere and geodesics on the two rotational axes of the (charged) doubly spinning black ring. We present analytical solutions to the geodesic equations f...
July 18, 2017
We examine motion of test particles with various masses, electric charges and dilatonic charges in a background metric and fields of a charged dilatonic black hole.
March 29, 2017
In this paper we have studied particle collisions around a charged dilaton black hole in 2+1 dimensions. This black hole is a solution to the low energy string action in 2+1 dimensions. Time-like geodesics for charged particles are studied in detail. The center of mass energy for two charged particles colliding closer to the horizon is calculated and shown to be infinite if one of the particles has the critical charge.
July 6, 2014
In this paper we study the timelike geodesics around a spherically symmetric charged dilaton black hole. The trajectories around the black hole are classified using the effective potential of a free test particle. This qualitative approach enables us to determine the type of the orbit described by the test particle without solving the equations of motion, if the parameters of the black hole and the particle are known. The connections between these parameters and the type of o...
September 1, 2011
In this paper, we investigate the null geodesics of the static charged black hole in heterotic string theory. A detailed analysis of the geodesics are done in the Einstein frame as well as in the string frame. In the Einstein frame, the geodesics are solved exactly in terms of the Jacobi-elliptic integrals for all possible energy levels and angular momentum of the photons. In the string frame, the geodesics are presented for the circular orbits. As a physical application of t...