June 6, 2000
Similar papers 2
March 26, 1997
High temperature expansions for the free energy, the susceptibility and the second correlation moment of the classical N-vector model [also known as the O(N) symmetric classical spin Heisenberg model or as the lattice O(N) nonlinear sigma model] on the sc and the bcc lattices are extended to order beta^{21} for arbitrary N. The series for the second field derivative of the susceptibility is extended to order beta^{17}. An analysis of the newly computed series for the suscepti...
December 24, 1992
The finite lattice method of series expansion is generalised to the $q$-state Potts model on the simple cubic lattice. It is found that the computational effort grows exponentially with the square of the number of series terms obtained, unlike two-dimensional lattices where the computational requirements grow exponentially with the number of terms. For the Ising ($q=2$) case we have extended low-temperature series for the partition functions, magnetisation and zero-field su...
September 17, 2012
The high-temperature expansion coefficients of the ordinary and the higher susceptibilities of the spin-1/2 nearest-neighbor Ising model are calculated exactly up to the 20th order for a general d-dimensional (hyper)-simple-cubical lattice. These series are analyzed to study the dependence of critical parameters on the lattice dimensionality. Using the general $d$ expression of the ordinary susceptibility, we have more than doubled the length of the existing series expansion ...
March 25, 1997
We compute the 2n-point renormalized coupling constants in the symmetric phase of the 3d Ising model on the sc lattice in terms of the high temperature expansions O(beta^{17}) of the Fourier transformed 2n-point connected correlation functions at zero momentum. Our high temperature estimates of these quantities, which enter into the small field expansion of the effective potential for a 3d scalar field at the IR fixed point or, equivalently, in the critical equation of state ...
October 10, 2017
Simulation data are analyzed for four 3D spin-$1/2$ Ising models: on the FCC lattice, the BCC lattice, the SC lattice and the Diamond lattice. The observables studied are the susceptibility, the reduced second moment correlation length, and the normalized Binder cumulant. From measurements covering the entire paramagnetic temperature regime the corrections to scaling are estimated. We conclude that a correction term having an exponent which is consistent within the statistics...
May 26, 1998
For the classical N-vector model, with arbitrary N, we have computed through order \beta^{17} the high temperature expansions of the second field derivative of the susceptibility \chi_4(N,\beta) on the simple cubic and on the body centered cubic lattices. (The N-vector model is also known as the O(N) symmetric classical spin Heisenberg model or, in quantum field theory, as the lattice O(N) nonlinear sigma model.) By analyzing the expansion of \chi_4(N,\beta) on the two latt...
September 3, 2002
New algorithm of the finite lattice method is presented to generate the high-temperature expansion series of the Ising model. It enables us to obtain much longer series in three dimensions when compared not only to the previous algorithm of the finite lattice method but also to the standard graphical method. It is applied to extend the high-temperature series of the simple cubic Ising model from beta^{26} to beta^{46} for the free energy and from beta^{25} to beta^{32} for th...
May 4, 1993
Although there is now a good measure of agreement between Monte Carlo and high-temperature series expansion estimates for Ising ($n=1$) models, published results for the critical temperature from series expansions up to 12{\em th} order for the three-dimensional classical Heisenberg ($n=3$) and XY ($n=2$) model do not agree very well with recent high-precision Monte Carlo estimates. In order to clarify this discrepancy we have analyzed extended high-temperature series expansi...
January 15, 1996
We present a status report on the ongoing analysis of the 3D Ising model with nearest-neighbor interactions using the Monte Carlo Renormalization Group (MCRG) and finite size scaling (FSS) methods on $64^3$, $128^3$, and $256^3$ simple cubic lattices. Our MCRG estimates are $K_{nn}^c=0.221655(1)(1)$ and $\nu=0.625(1)$. The FSS results for $K^c$ are consistent with those from MCRG but the value of $\nu$ is not. Our best estimate $\eta = 0.025(6)$ covers the spread in the MCRG ...
February 19, 2003
For the study of Ising models of general spin S on the square lattice, we have combined our recently extended high-temperature expansions with the low-temperature expansions derived some time ago by Enting, Guttmann and Jensen. We have computed for the first time various critical parameters and improved the estimates of others. Moreover the properties of hyperscaling and of universality (spin S independence) of exponents and of various dimensionless amplitude combinations h...