May 29, 2001
Similar papers 2
January 28, 2008
We propose a non-lattice simulation for studying supersymmetric matrix quantum mechanics in a non-perturbative manner. In particular, our method enables us to put M theory on a computer based on its matrix formulation proposed by Banks, Fischler, Shenker and Susskind. Here we present Monte Carlo results of the same matrix model but in a different parameter region, which corresponds to the 't Hooft large-N limit at finite temperature. In the strong coupling limit the model has...
October 4, 2021
We study the confinement/deconfinement transition in the D0-brane matrix model (often called the BFSS matrix model) and its one-parameter deformation (the BMN matrix model) numerically by lattice Monte Carlo simulations. Our results confirm general expectations from the dual string/M-theory picture for strong coupling. In particular, we observe the confined phase in the BFSS matrix model, which is a nontrivial consequence of the M-theory picture. We suggest that these models ...
March 13, 1998
We discuss supersymmetric Yang-Mills theory dimensionally reduced to zero dimensions and evaluate the SU(2) and SU(3) partition functions by Monte Carlo methods. The exactly known SU(2) results are reproduced to very high precision. Our calculations for SU(3) agree closely with an extension of a conjecture due to Green and Gutperle concerning the exact value of the SU(N) partition functions.
September 6, 2017
A black hole described in $SU(N)$ gauge theory consists of $N$ D-branes. By separating one of the D-branes from others and studying the interaction between them, the black hole geometry can be probed. In order to obtain quantitative results, we employ the lattice Monte Carlo simulation. As a proof of the concept, we perform an explicit calculation in the matrix model dual to the black zero-brane in type IIA string theory. We demonstrate this method actually works in the high ...
September 24, 2012
We make a first study of the phase diagram of four-dimensional N=4 super Yang-Mills theory regulated on a space-time lattice. The lattice formulation we employ is both gauge invariant and retains at all lattice spacings one exactly preserved supersymmetry charge. Our numerical results are consistent with the existence of a single deconfined phase at all observed values of the bare coupling.
October 17, 2017
The lattice studies of maximally supersymmetric Yang-Mills (MSYM) theory at strong coupling and large N is important for verifying gauge/gravity duality. Due to the progress made in the last decade, based on ideas from topological twisting and orbifolding, it is now possible to study these theories on the lattice while preserving an exact supersymmetry on the lattice. We present some results from the lattice studies of two-dimensional MSYM which is related to Type II supergra...
December 3, 2015
Non-perturbative investigations of $\mathcal N = 4$ supersymmetric Yang--Mills theory formulated on a space-time lattice have advanced rapidly in recent years. Large-scale numerical calculations are currently being carried out based on a construction that exactly preserves a single supersymmetry at non-zero lattice spacing. A recent development is the creation of an improved lattice action through a new procedure to regulate flat directions in a manner compatible with this su...
August 29, 2010
We report on the results of numerical simulations of 1+1 dimensional SU(N) Yang-Mills theory with maximal supersymmetry at finite temperature and compactified on a circle. For large N this system is thought to provide a dual description of the decoupling limit of N coincident D1-branes on a circle. It has been proposed that at large N there is a phase transition at strong coupling related to the Gregory-Laflamme (GL) phase transition in the holographic gravity dual. In a high...
January 12, 2001
We simulate a supersymmetric matrix model obtained from dimensional reduction of 4d SU(N) super Yang-Mills theory. The model is well defined for finite N and it is found that the large N limit obtained by keeping g^2 N fixed gives rise to well defined operators which represent string amplitudes. The space-time structure which arises dynamically from the eigenvalues of the bosonic matrices is discussed, as well as the effect of supersymmetry on the dynamical properties of the ...
September 24, 2009
Recently, new theoretical ideas have allowed the construction of lattice actions which are explicitly invariant under one or more supersymmetries. These theories are local and free of doublers and in the case of Yang-Mills theories also possess exact gauge invariance. In this talk these ideas are reviewed with particular emphasis being placed on ${\cal N}=4$ super Yang-Mills theory.