December 28, 2009
We study light-quark observables by means of dynamical lattice QCD simulations using two flavours of twisted mass fermions at maximal twist. We employ chiral perturbation theory to describe our data for the pion mass and decay constant. In this way, we extract precise determinations for the low-energy constants of the effective theory as well as for the light-quark mass and the chiral condensate.
October 10, 2006
Due to improvements in computer performance and algorithms, the rapidly increasing cost for unquenched Wilson-type fermions with lighter quarks has been ameliorated and new simulations are now possible. Here we present results using two flavours of O(a)-improved Wilson fermions for meson decay constants at pseudoscalar masses down to 320MeV. Results are at several lattice spacings down to about 0.07fm and include a non-perturbative determination of the renormalisation constan...
October 1, 2007
We present the results of the lattice QCD calculation of the average up-down and strange quark masses and of the light meson pseudoscalar decay constants, recently performed with Nf=2 dynamical fermions by the ETM Collaboration. The simulation is carried out at a single value of the lattice spacing with the twisted mass fermionic action at maximal twist, which guarantees automatic O(a)-improvement of the physical quantities. Quark masses are renormalized by implementing the n...
July 17, 2015
We present physics results from simulations of QCD using $N_f = 2$ dynamical Wilson twisted mass fermions at the physical value of the pion mass. These simulations were enabled by the addition of the clover term to the twisted mass quark action. We show evidence that compared to previous simulations without this term, the pion mass splitting due to isospin breaking is almost completely eliminated. Using this new action, we compute the masses and decay constants of pseudoscala...
June 15, 2006
A first study of numerical Monte Carlo simulations with two quark doublets, a mass-degenerate one and a mass-split one, interpreted as u, d, s and c quarks, is carried out in the framework of the twisted mass Wilson lattice formulation. Tuning the bare parameters of this theory is explored on 12^3x24 and 16^3x32 lattices at lattice spacings a=0.20fm and a=0.15fm, respectively.
November 10, 2009
In this proceeding contribution we report on the ongoing effort to simulate Wilson-type fermions in the so called epsilon regime of chiral perturbation theory. We present results for the chiral condensate and the pseudoscalar decay constant obtained with Wilson twisted mass fermions employing two lattice spacings, two different physical volumes and several quark masses. With this set of simulations we make a first attempt to estimate the systematic uncertainties.
September 3, 2002
I present preliminary results on the light quark masses from a partially quenched analysis of UKQCD's dynamical datasets.
October 31, 2000
We present a scaling study of lattice QCD with O(a) improved Wilson fermions and a chirally twisted mass term. In order to get precise results with a moderate computational effort, we have considered a system of physical size of 0.75^3 * 1.5 fm^4 with Schroedinger functional boundary conditions in the quenched approximation. Looking at meson observables in the pseudoscalar and vector channels, we find that O(a) improvement is effective and residual cutoff effects are fairly s...
November 10, 2014
Wilson Fermions with untwisted and twisted mass are widely used in lattice simulations. Therefore one important question is whether the twist angle and the lattice spacing affect the phase diagram. We briefly report on the study of the phase diagram of QCD in the parameter space of the degenerate quark masses, isospin chemical potential, lattice spacing, and twist angle by employing chiral perturbation theory. Moreover we calculate the pion masses and their dependence on thes...
March 22, 2006
Quantum Chromodynamics on a lattice with Wilson fermions and a chirally twisted mass term is considered in the framework of chiral perturbation theory. For two and three numbers of quark flavours, respectively, with non-degenerate quark masses the pseudoscalar meson masses and decay constants are calculated in next-to-leading order including lattice effects quadratic in the lattice spacing a.