May 9, 2011
We consider theories of flavored dark matter, in which the dark matter particle is part of a multiplet transforming nontrivially under the flavor group of the Standard Model in a manner consistent with the principle of Minimal Flavor Violation (MFV). MFV automatically leads to the stability of the lightest state for a large number of flavor multiplets. If neutral, this particle is an excellent dark matter candidate. Furthermore, MFV implies specific patterns of mass splitting...
September 18, 2017
We explore the idea of an alternative candidate for particle dark matter namely Feebly Interacting Massive Particle (FIMP) in the framework of a two component singlet scalar model. Singlet scalar dark matter has already been demonstrated to be a viable candidate for WIMP (Weakly Interacting Massive Particle) dark matter in literature. In the FIMP scenario, dark matter particles are slowly produced via "thermal frreze-in" mechanism in the early Universe and are never abundant ...
April 6, 2004
Dark matter is presumably made of some new, exotic particle that appears in extensions of the Standard Model. After giving a brief overview of some popular candidates, I discuss in more detail the most appealing case of the supersymmetric neutralino.
August 21, 2014
In the framework of an nonuniversal $U(1)'$ extension of the standard model, we propose an scalar candidate for cold dark matter which exhibits interactions with ordinary matter through Higgs and gauge bosons. Using limits from low energy observables, we find constraints on the new physics parameters of the model associated to the extra abelian symmetry, in particular, the mass of the additional neutral gauge boson $Z'$ and the new gauge coupling constant. We found that for t...
March 10, 2016
An interesting possibility for dark matter is a scalar particle of mass of order 10 MeV-1 GeV, interacting with a U(1) gauge boson (dark photon) which mixes with the photon. We present a simple and natural model realizing this possibility. The dark matter arises as a composite pseudo Nambu-Goldstone boson (dark pion) in a non-Abelian gauge sector, which also gives a mass to the dark photon. For a fixed non-Abelian gauge group, SU(N), and a U(1) charge of the constituent dark ...
November 7, 2022
We study a simplified model of lepton-flavoured complex scalar dark matter set up in the Dark Minimal Flavour Violation framework. In this model the Standard Model is extended by a scalar dark matter flavour triplet and a charged fermionic mediator, through which dark matter couples to the right-handed charged leptons of the Standard Model. This interaction is parameterized by a new $3\times 3$ coupling matrix $\lambda$. Consistent with the field content of the model, also th...
October 9, 2023
In this paper, we construct a viable model for a GeV scale self-interacting dark matter (DM), where the DM was thermally produced in the early universe. Here, a new vector-like fermion with a dark charge under the $U(1)_{D}$ gauge symmetry serves as a secluded WIMP DM and it can dominantly annihilate into the light dark gauge boson and singlet scalar through the dark gauge interaction. Also, the self-interaction of DM is induced by the light dark gauge boson via the same gaug...
March 30, 2008
We propose that dark matter is composed of particles that naturally have the correct thermal relic density, but have neither weak-scale masses nor weak interactions. These WIMPless models emerge naturally from gauge-mediated supersymmetry breaking, where they elegantly solve the dark matter problem. The framework accommodates single or multiple component dark matter, dark matter masses from 10 MeV to 10 TeV, and interaction strengths from gravitational to strong. These candid...
January 1, 2011
We extend the Standard Model by adding two gauge-singlet $\mathbb{Z}_{2}$% -symmetric scalar fields that interact with visible matter only through the Higgs particle. One is a stable dark matter WIMP, and the other one undergoes a spontaneous breaking of the symmetry that opens new channels for the dark matter annihilation, hence lowering the mass of the WIMP. We study the effects of the observed dark matter relic abundance on the annihilation cross section and find that in m...
February 15, 2014
There is strong evidence in favor of the idea that dark matter is self interacting, with the cross section-to-mass ratio $\sigma / m \sim 1\,\mathrm{cm^2/g} \sim 1\,\mathrm{barn/GeV}$. We show that viable models of dark matter with this large cross section are straightforwardly realized with non-Abelian hidden sectors. In the simplest of such models, the hidden sector is a pure gauge theory, and the dark matter is composed of hidden glueballs with a mass around $100\,\mathrm{...