July 23, 2016
The Peccei-Quinn mechanism presents a neat solution to the strong CP problem. As a by-product, it provides an ideal dark matter candidate, "the axion", albeit with a tiny mass. Axions therefore can act as dark radiation if excited with large momenta after the end of inflation. Nevertheless, the recent measurement of relativistic degrees of freedom from cosmic microwave background radiation strictly constrains the abundance of such extra relativistic species. We show that ultr...
October 7, 2022
The Peccei-Quinn solution to the strong CP problem provides a motivated framework rich in cosmological consequence. Thermal axion production is unavoidable if there is a thermal bath at early times. Scattering and decay processes of bath particles can dump relativistic axions in the primordial plasma, and they can leave observable signatures in cosmological observables probing both the early and the late universe if produced with a significant abundance. We present recent and...
June 16, 1999
We point out that the axino predicted as the supersymmetric partner of the axion is a good candidate for the recently proposed sterile neutrino cool dark matter. The axino mass falls into the right range in the context of gauge mediated supersymmetry breaking. A sizable mixing of the axino with active neutrinos arises when R-parity violation is allowed and the resulting neutrino masses and mixing accommodate the atmospheric and solar neutrino oscillations simultaneously.
October 5, 2009
Axion/axino dark matter (DM) is explored in the minimal supergravity (mSUGRA) and Yukawa-unified supersymmetric grand-unified theory (SUSY GUT) models with surprising results. For this type of scenario, relic DM abundance has three components: {\it i}.) cold axions, {\it ii.}) warm axinos from neutralino decay, and {\it iii.}) cold or warm thermally produced axinos. Reheat temperatures $T_R$ exceeding $10^6$ GeV are required in order to solve the gravitino/Big Bang Nucleosynt...
November 25, 2011
We study the cosmological impact of the supersymmetric DFSZ axion model. Extending recent works, we first provide a comprehensive analysis of thermal production of the DFSZ axino considering all the possible scattering, decay and inverse decay processes depending on various mass parameters and the reheat temperature. Although it is hard for the DFSZ axino to be in thermal equilibrium, its coupling is still large enough to generate huge axino population which can turn into ove...
October 11, 2011
We calculate the relic abundance of mixed axion/neutralino cold dark matter which arises in R-parity conserving supersymmetric (SUSY) models wherein the strong CP problem is solved by the Peccei-Quinn (PQ) mechanism with a concommitant axion/saxion/axino supermultiplet. By numerically solving the coupled Boltzmann equations, we include the combined effects of 1. thermal axino production with cascade decays to a neutralino LSP, 2. thermal saxion production and production via c...
September 30, 2018
We consider the thermal production of axino dark matter in high-scale supersymmetry where all the superpartners except the axino are heavier than the maximum and reheating temperatures. In this case, the axinos are produced dominantly in pairs from the scattering of SM particles in thermal plasma in the early Universe after inflation. We find that the thermal averaged scattering cross section for the axino pair production is given by $\langle\sigma v\rangle \propto T^4$ in Ki...
May 6, 2015
Axions in the Peccei-Quinn (PQ) mechanism provide a promising solution to the strong CP problem in the standard model of particle physics. Coherently generated PQ scalar fields could dominate the energy density in the early Universe and decay into relativistic axions, which would conflict with the current dark radiation constraints. We study the possibility that a thermal inflation driven by a $U(1)$ gauged Higgs field dilutes such axions. A well-motivated extra gauged $U(1)$...
June 15, 2009
We examine the minimal supergravity (mSUGRA) model under the assumption that the strong CP problem is solved by the Peccei-Quinn mechanism. In this case, the relic dark matter (DM) abundance consists of three components: {\it i}). cold axions, {\it ii}). warm axinos from neutralino decay, and {\it iii}). cold or warm thermally produced axinos. To sustain a high enough re-heat temperature (T_R\agt 10^6 GeV) for many baryogenesis mechanisms to function, we find that the bulk of...
November 15, 2016
A new scheme for lightest supersymmetric particle (LSP) dark matter is introduced and studied in theories of TeV supersymmetry with a QCD axion, $a$, and a high reheat temperature after inflation, $T_R$. A large overproduction of axinos ($\tilde{a}$) and gravitinos ($\tilde{G}$) from scattering at $T_R$, and from freeze-in at the TeV scale, is diluted by the late decay of a saxion condensate that arises from inflation. The two lightest superpartners are $\tilde{a}$, with mass...