January 30, 2006
Similar papers 3
February 8, 1995
In a recent paper \cite{ft} a new powerful method to calculate Feynman diagrams was proposed. It consists in setting up a Taylor series expansion in the external momenta squared. The Taylor coefficients are obtained from the original diagram by differentiation and putting the external momenta equal to zero. It was demonstrated that by a certain conformal mapping and subsequent resummation by means of Pad\'{e} approximants it is possible to obtain high precision numerical valu...
July 31, 1998
Two program packages are presented for evaluating one-loop amplitudes. They can work either in dimensional regularization or in constrained differential renormalization. The latter method is found at the one-loop level to be equivalent to regularization by dimensional reduction.
November 8, 2011
We present the program package GoSam which is designed for the automated calculation of one-loop amplitudes for multi-particle processes in renormalisable quantum field theories. The amplitudes, which are generated in terms of Feynman diagrams, can be reduced using either D-dimensional integrand-level decomposition or tensor reduction. GoSam can be used to calculate one-loop QCD and/or electroweak corrections to Standard Model processes and offers the flexibility to link mode...
October 27, 1997
The aim of XLOOPS is to calculate one-particle irreducible Feynman diagrams with one or two closed loops for arbitrary processes in the Standard model of particles and related theories. Up to now this aim is realized for all one-loop diagrams with at most three external lines and for two-loop diagrams with two external lines.
April 22, 2016
We report on a new version of FeynCalc, a well-known Mathematica package for symbolic computations in quantum field theory and provide some explicit examples for using the software in different types of calculations.
September 30, 2014
We present the version 2.0 of the program package GoSam, which is a public program package to compute one-loop QCD and/or electroweak corrections to multi-particle processes within and beyond the Standard Model. The extended version of the Binoth-Les-Houches-Accord interface to Monte Carlo programs is also implemented. This allows a large flexibility regarding the combination of the code with various Monte Carlo programs to produce fully differential NLO results, including th...
July 21, 2010
We report on the current status of the Golem project which aims at the construction of a general one-loop evaluator for matrix elements. We construct the one-loop matrix elements from Feynman diagrams in a highly automated way and provide a library for the reduction and numerically stable evaluation of the tensor integrals involved in this approach. Furthermore, we present applications to physics processes relevant for the LHC.
June 30, 2006
In this talk we describe our approach for the computation of multi-leg one-loop amplitudes and present some first results relevant for LHC phenomenology.
September 14, 2007
We recently presented a new method for the evaluation of one-loop amplitude of arbitrary scattering processes, in which the reduction to scalar integrals is performed at the integrand level. In this talk, we review the main features of the method and briefly summarize the results of the first calculations performed using it.
September 1, 1997
We present an improved version of our program package oneloop which -- written as a package for MAPLE -- solves one-loop Feynman integrals. The package is calculating one-, two- and three-point functions both algebraically and numerically to any tensor rank. In addition to the original version oneloop 2.0 also calculates infrared divergent integrals. Higher powers of propagator terms and the $O(\eps)$ parts relevant for two-loop calculations are now supported.