January 13, 1999
Similar papers 3
March 15, 2005
While existing detectors would see a burst of many neutrinos from a Milky Way supernova, the supernova rate is only a few per century. As an alternative, we propose the detection of ~ 1 neutrino per supernova from galaxies within 10 Mpc, in which there were at least 9 core-collapse supernovae since 2002. With a future 1-Mton scale detector, this could be a faster method for measuring the supernova neutrino spectrum, which is essential for calibrating numerical models and pred...
July 19, 1999
We study the role that the future detection of the neutrino burst from a galactic supernova can play in the reconstruction of the neutrino mass spectrum. We consider all possible 3$\nu$ mass and flavor spectra which describe the solar and atmospheric neutrino data. For each of these spectra we find the observable effects of the supernova neutrino conversions both in the matter of the star and the earth. We show that studies of the electron neutrino and anineutrino spectra as ...
December 28, 2007
The neutrino burst from a galactic supernova can help determine the neutrino mass hierarchy and $\theta_{13}$, and provide crucial information about supernova astrophysics. Here we review our current understanding of the neutrino burst, flavor conversions of these neutrinos, and model independent signatures of various neutrino mixing scenarios.
May 27, 2022
We highlight developments in the domain of supernova neutrinos. We discuss the importance of the future observation, by running and upcoming experiments, of the neutrino signals from the next supernova as well as of the diffuse supernova neutrino background.
July 6, 2015
On February 23, 1987 we collected 24 neutrinos from the explosion of a blue super-giant star in the Large Magellanic Cloud confirming the basic paradigm of core-collapse supernova. During the many years we have been waiting for a repeat of that momentous day, the number and size of neutrino detectors around the world has grown considerably. If the neutrinos from the next supernova in our Galaxy arrive tomorrow we shall collect upwards of tens of thousands of events and next g...
December 3, 2004
One of the robust features found in simulations of core-collapse supernovae (SNe) is the prompt neutronization burst, i.e. the first $\sim 25$ milliseconds after bounce when the SN emits with very high luminosity mainly $\nu_e$ neutrinos. We examine the dependence of this burst on variations in the input of current SN models and find that recent improvements of the electron capture rates as well as uncertainties in the nuclear equation of state or a variation of the progenito...
November 11, 2003
The aim of these notes is to provide a brief review of the topic of neutrino astronomy and in particular of neutrinos from core collapse supernovae. They are addressed to a curious reader, beginning to work in a multidisciplinary area that involves experimental neutrino physics, astrophysics, nuclear physics and particle physics phenomenology. After an introduction to the methods and goals of neutrinos astronomy, we focus on core collapse supernovae, as (one of) the most prom...
October 30, 2023
Core-collapse supernovae (SNe) are one of the most powerful cosmic sources of neutrinos, with energies of several MeV. The emission of neutrinos and antineutrinos of all flavors carries away the gravitational binding energy of the compact remnant and drives its evolution from the hot initial to the cold final states. Detecting these neutrinos from Earth and analyzing the emitted signals present a unique opportunity to explore the neutrino mass ordering problem. This research ...
April 25, 2016
Neutrinos play a key role in core-collapse supernova explosions. Carrying information from deep inside the stellar core, neutrinos are direct probes of the supernova mechanism. Intriguing recent developments on the role of neutrinos in supernovae are reviewed, as well as our current understanding of the flavor conversions in the stellar envelope, and the detection perspectives of the next burst.
July 31, 2015
Neutrinos play a crucial role in the collapse and explosion of massive stars, governing the infall dynamics of the stellar core, triggering and fueling the explosion and driving the cooling and deleptonization of the newly formed neutron star. Due to their role neutrinos carry information from the heart of the explosion and, due to their weakly interacting nature, offer the only direct probe of the dynamics and thermodynamics at the center of a supernova. In this paper, we re...