February 28, 2000
Similar papers 4
March 30, 2001
It has been shown by Batyrev and Borisov that nef partitions of reflexive polyhedra can be used to construct mirror pairs of complete intersection Calabi--Yau manifolds in toric ambient spaces. We construct a number of such spaces and compute their cohomological data. We also discuss the relation of our results to complete intersections in weighted projective spaces and try to recover them as special cases of the toric construction. As compared to hypersurfaces, codimension t...
July 15, 2009
We use Batyrev-Borisov's formula for the generating function of stringy Hodge numbers of Calabi-Yau varieties realized as complete intersections in toric varieties in order to get closed form expressions for Hodge numbers of Calabi-Yau threefolds in five-dimensional ambient spaces. These expressions involve counts of lattice points on faces of associated Cayley polytopes. Using the same techniques, similar expressions may be obtained for higher dimensional varieties realized ...
October 28, 2003
This article announces the completion of the classification of rank 4 locally projective polytopes and their quotients. There are seventeen universal locally projective polytopes (nine nondegenerate). Amongst their 441 quotients are a further four (nonuniversal) regular polytopes, and 152 nonregular but section regular polytopes. All 156 of the latter have hemidodecahedral facets or hemi-icosahedral vertex figures. It is noted that, remarkably, every rank 4 locally projective...
June 21, 2012
We provide a complete classification up to isomorphism of all smooth convex lattice 3-polytopes with at most 16 lattice points. There exist in total 103 different polytopes meeting these criteria. Of these, 99 are strict Cayley polytopes and the remaining 4 are obtained as inverse stellar subdivisions of such polytopes. We derive a classification, up to isomorphism, of all smooth embeddings of toric threefolds in $\mathbb{P}^N$ where $N\le 15$. Again we have in total 103 such...
August 4, 2020
We study Calabi-Yau threefolds with large Hodge numbers by constructing and counting triangulations of reflexive polytopes. By counting points in the associated secondary polytopes, we show that the number of fine, regular, star triangulations of polytopes in the Kreuzer-Skarke list is bounded above by $\binom{14,111}{494} \approx 10^{928}$. Adapting a result of Anclin on triangulations of lattice polygons, we obtain a bound on the number of triangulations of each 2-face of e...
June 22, 2011
We describe the C program mori.x. It is part of PALP, a package for analyzing lattice polytopes. Its main purpose is the construction and analysis of three--dimensional smooth Calabi--Yau hypersurfaces in toric varieties. The ambient toric varieties are given in terms of fans over the facets of reflexive lattice polytopes. The program performs crepant star triangulations of reflexive polytopes and determines the Mori cones of the resulting toric varieties. Furthermore, it com...
March 7, 2013
We present an exhaustive, constructive, classification of the Calabi-Yau four-folds which can be described as complete intersections in products of projective spaces. A comprehensive list of 921,497 configuration matrices which represent all topologically distinct types of complete intersection Calabi-Yau four-folds is provided and can be downloaded at http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/Cicy4folds/index.html . The manifolds have non-negative Euler character...
February 28, 1997
Recent results on duality between string theories and connectedness of their moduli spaces seem to go a long way toward establishing the uniqueness of an underlying theory. For the large class of Calabi-Yau 3-folds that can be embedded as hypersurfaces in toric varieties the proof of mathematical connectedness via singular limits is greatly simplified by using polytopes that are maximal with respect to certain single or multiple weight systems. We identify the multiple weight...
September 6, 2008
We use the notions of reflexivity and of reflexive dimensions in order to introduce probability measures for lattice polytopes and initiate the investigation of their statistical properties. Examples of applications to discrete geometry include a study of randomness of self-duality of reflexive polytopes and implications for expectation values of the numbers of such polytopes in higher dimensions. We also discuss enumeration problems and related algorithms and point out inter...
May 12, 2020
In this article, we consider the phenomenon of complete coincidence of the key properties of pairs of Calabi-Yau manifolds realized as hypersurfaces in two different weighted projective spaces. More precisely, the first manifold in such a pair is realized as a hypersurface in a weighted projective space, and the second as a hypersurface in the orbifold of another weighted projective space. The two manifolds in each pair have the same Hodge numbers and special K\"ahler geometr...