October 17, 2012
We describe a few unexpected features of de Sitter Quantum Field Theory that have no Minkowskian counterparts. These phenomena show that even when the cosmological constant is tiny a Minkowskian way of fast thinking about de Sitter can lead to mistakes and that de Sitter QFT is essentially different from standard relativistic (Minkowskian) QFT.
February 28, 2013
It is possible to associate temperatures with the non-extremal horizons of a large class of spherically symmetric spacetimes using periodicity in the Euclidean sector and this procedure works for the de Sitter spacetime as well. But, unlike e.g., the black hole spacetimes, the de Sitter spacetime also allows a description in Friedmann coordinates. This raises the question of whether the thermality of the de Sitter horizon can be obtained, working entirely in the Friedmann coo...
April 14, 2022
We argue that the flat spacetime with inexact quantum mechanics in it is dual to the de Sitter spacetime with exact quantum mechanics in it, and the positive cosmological constant of this de Sitter spacetime is in the second order of the degree of the violation of the bulk quantum mechanics in the flat spacetime. The flat spacetime is holographic and has a dual time-contracted boundary conformal field theory with two redefined central charges at null infinity. The vanishing s...
August 23, 2002
We investigate the quantum aspects of three-dimensional gravity with a positive cosmological constant. The reduced phase space of the three-dimensional de Sitter gravity is obtained as the space which consists of the Kerr-de Sitter space-times and their Virasoro deformations. A quantization of the phase space is carried out by the geometric quantization of the coadjoint orbits of the asymptotic Virasoro symmetries. The Virasoro algebras with real central charges are obtained ...
June 16, 2023
These lecture notes provide an overview of different aspects of de Sitter space and their plausible holographic interpretations. We start with a general description of the classical spacetime. We note the existence of a cosmological horizon and its associated thermodynamic quantities, such as the Gibbons-Hawking entropy. We discuss geodesics and shockwave solutions, that might play a role in a holographic description of de Sitter. Finally, we discuss different approaches to q...
November 3, 2017
Two important problems in studying the quantum black hole, namely the construction of the Hilbert space and the definition of the time evolution operator on such Hilbert space, are discussed using the de Sitter background field method for an observer far from the black hole. This is achieved through the ambient space formalism. Remarkably, in this approximation (distant observer), the theory preserves unitarity and analyticity, it is free from any infrared divergence, and it ...
May 17, 2012
We discuss some of the issues that arise when considering the physics of asymptotically de Sitter spacetimes, and attempts to address them. Our development begins at the classical level, where several initial value problems are discussed, and ends with several proposals for holography in asymptotically de Sitter spacetimes. Throughout the paper we give a review of some basic notions such as the geometry of the Schwarzschild-de Sitter black hole, the Nariai limit, and quantum ...
October 2, 2007
In the presence of a cosmological constant, interpreted as a purely geometric entity, absence of matter is represented by a de Sitter spacetime. As a consequence, ordinary Poincare' special relativity is no longer valid and must be replaced by a de Sitter special relativity. By considering the kinematics of a spinless particle in a de Sitter spacetime, we study the geodesics of this spacetime, the ensuing definitions of canonical momenta, and explore possible implications for...
October 8, 2002
We consider classical and quantum dynamics of a free particle in de Sitter's space-times with different topologies to see what happens to space-time singularities of removable type in quantum theory. We find analytic solution of the classical dynamics. The quantum dynamics is solved by finding an essentially self-adjoint representation of the algebra of observables integrable to the unitary representations of the symmetry group of each considered gravitational system. The dyn...
September 18, 2007
The Kodama state is unique in being an exact solution to all the constraints of quantum gravity that also has a well defined semi-classical interpretation as the quantum version of a classical spacetime, namely de Sitter or anti-de sitter space. Despite this, the state fails to pass some of the key tests of a physically realistic quantum state. In an attempt to resolve this problem, we track down the root of the problem to a choice for a particular parameter: the Immirzi para...