September 2, 2011
We argue that the problem of finding lower-dimensional de Sitter solutions to the classical field equations of higher-dimensional supergravity necessarily requires understanding the back-reaction of whatever localized objects source the bulk fields. However, we also find that most of the details of the back-reacted solutions are not important for determining the lower-dimensional curvature. We find, in particular, a classically exact expression that, for a broad class of geom...
December 17, 2002
In this paper we assume the de Sitter Space version of Black Hole Complementarity which states that a single causal patch of de Sitter space is described as an isolated finite temperature cavity bounded by a horizon which allows no loss of information. We discuss the how the symmetries of de Sitter space should be implemented. Then we prove a no go theorem for implementing the symmetries if the entropy is finite. Thus we must either give up the finiteness of the de Sitter ent...
May 7, 2021
We revisit moduli stabilisation for type IIB flux compactifications that include a warped throat region corresponding to a warped deformed conifold, with an anti-D3-brane sitting at its tip. The warping induces a coupling between the conifold's deformation modulus and the bulk volume modulus in the K\"ahler potential. Previous works have studied the scalar potential assuming a strong warping such that this coupling term dominates, and found that the anti-D3-brane uplift may d...
January 29, 2003
We outline the construction of metastable de Sitter vacua of type IIB string theory. Our starting point is highly warped IIB compactifications with nontrivial NS and RR three-form fluxes. By incorporating known corrections to the superpotential from Euclidean D-brane instantons or gaugino condensation, one can make models with all moduli fixed, yielding a supersymmetric AdS vacuum. Inclusion of a small number of anti-D3 branes in the resulting warped geometry allows one to up...
July 5, 2016
We revisit the issue of uplifting the potential to de Sitter (dS) vacua in type IIB flux compactifications of Kachru, Kallosh, Linde and Trivedi (KKLT). We shed light on some tension between two constraints on dS vacua in type IIB string theory. One is the well-known and much-discussed constraint which leads to the no-go theorem that can in principle be evaded. The other follows from 4-dimensional Einstein's equations, which has, however, been much less discussed in connectio...
May 14, 2019
In order for spacetimes with static extra dimensions to have 4-dimensional de Sitter expansion they must have at least positive curvature, warping sourced by the 4-d expansion, or violate the null energy condition everywhere in the extra dimensions. We show how this constraint arises from the null Raychaudhuri equation, and that it is independent of the matter content, the Einstein equations, and is true point-by-point in the extra dimensions (not integrated), setting it apar...
December 12, 2022
We review various aspects of de Sitter spacetime in string theory: its status as an effective field theory spacetime solution, its relation to the vacuum energy problem in string theory, its (global) holographic definition in terms of two entangled and non-canonical conformal field theories, as well as a realization of a realistic de Sitter universe endowed with the observed visible matter and the necessary dark sector in order to reproduce the realistic cosmological structur...
July 23, 2020
We continue the study of compactifications of massive IIA supergravity on G2 orientifolds and demonstrate that breaking supersymmetry with anti-D2 and anti-D6 sources leads to 3d theories for which the typical tachyons haunting classical dS solutions can be absent. However for a concrete torus example the meta-stable dS window disappears after a quantization of fluxes and charges. We discuss the prospects of more general G2 compactifications and argue that they could potentia...
October 30, 1996
With the exception of gravitation, the known fundamental interactions of Nature are mediated by gauge fields. A comparison of the candidate groups for a gauge theory possibly describing gravitation favours the Poincar\'e group as the obvious choice. This theory gives Einstein's equations in a particular case, and Newton's law in the static non-relativistic limit, being seemingly sound at the classical level. But it comes out that it is not quantizable. The usual procedure of ...
June 16, 2023
These lecture notes provide an overview of different aspects of de Sitter space and their plausible holographic interpretations. We start with a general description of the classical spacetime. We note the existence of a cosmological horizon and its associated thermodynamic quantities, such as the Gibbons-Hawking entropy. We discuss geodesics and shockwave solutions, that might play a role in a holographic description of de Sitter. Finally, we discuss different approaches to q...