January 14, 2005
Similar papers 5
August 27, 2002
We discuss a concept of particle localization which is motivated from quantum field theory, and has been proposed by Brunetti, Guido and Longo and by Schroer. It endows the single particle Hilbert space with a family of real subspaces indexed by the space-time regions, with certain specific properties reflecting the principles of locality and covariance. We show by construction that such a localization structure exists also in the case of massive anyons in d=2+1, i.e. for par...
August 28, 1999
Some basic topics in the light-front (LF) quantization of relativistic field theory are reviewed. It is argued that the LF quantization is equally appropriate as the conventional one and that they lead, assuming the micro- causality principle, to the same physical content. This is confirmed in the studies on the LF of the spontaneous symmetry breaking (SSB), of the degenerate vacua in Schwinger model (SM) and Chiral SM (CSM), of the chiral boson theory, and of the QCD in cova...
January 11, 2006
A new approach to the construction of interacting quantum field theories on two-dimensional Minkowski space is discussed. In this program, models are obtained from a prescribed factorizing S-matrix in two steps. At first, quantum fields which are localized in infinitely extended, wedge-shaped regions of Minkowski space are constructed explicitly. In the second step, local observables are analyzed with operator-algebraic techniques, in particular by using the modular nuclearit...
August 23, 2012
A large class of quantum field theories on 1+1 dimensional Minkowski space, namely, certain integrable models, has recently been constructed rigorously by Lechner. However, the construction is very abstract and the concrete form of local observables in these models remains largely unknown. Aiming for more insight into their structure, we establish a series expansion for observables, similar but not identical to the well-known form factor expansion. This expansion will be the ...
June 26, 1996
Starting from a local quantum field theory with an unbroken compact symmetry group $G$ in 1+1-dimensional spacetime we construct disorder fields implementing gauge transformations on the fields (order variables) localized in a wedge region. Enlarging the local algebras by these disorder fields we obtain a nonlocal field theory, the fixpoint algebras of which under the appropriately extended action of the group $G$ are shown to satisfy Haag duality in every simple sector. The ...
June 24, 2010
Under natural conditions (such as split property and geometric modular action of wedge algebras) it is shown that the unitary equivalence class of the net of local (von Neumann) algebras in the vacuum sector associated to double cones with bases on a fixed space-like hyperplane completely determines an algebraic QFT model. More precisely, if for two models there is unitary connecting all of these algebras, then --- without assuming that this unitary also connects their respec...
July 8, 2014
Modular localization is the concise conceptual formulation of causal localization in the setting of local quantum physics. Unlike QM it does not refer to individual operators but rather to ensembles of observables which share the same localization region, as a result it explains the probabilistic aspects of QFT in terms of the impure KMS nature arising from the local restriction of the pure vacuum. Whereas it played no important role in the perturbation theory of low spin par...
October 29, 2001
The purpose of the "bootstrap program" is to construct integrable quantum field theories in 1+1 dimensions in terms of their Wightman functions explicitly. As an input the integrability and general assumptions of local quantum field theories are used. The object is to be achieved in tree steps: 1) The S-matrix is obtained using a qualitative knowledge of the particle spectrum and the Yang-Baxter equations. 2) Matrix elements of local operators are calculated by means of the "...
April 26, 2005
In the past two-dimensional models of QFT have served as theoretical laboratories for testing new concepts under mathematically controllable condition. In more recent times low-dimensional models (e.g. chiral models, factorizing models) often have been treated by special recipes in a way which sometimes led to a loss of unity of QFT. In the present work I try to counteract this apartheid tendency by reviewing past results within the setting of the general principles of QFT. T...
August 15, 2002
It is shown that a suitably formulated algebraic lightfront holography, in which the lightfront is viewed as the linear extension of the upper causal horizon of a wedge region, is capable of overcoming the shortcomings of the old lightfront quantization. The absence of transverse vacuum fluctuations which this formalism reveals, is responsible for an area (edge of the wedge) -rearrangement of degrees of freedom which in turn leads to the notion of area density of entropy for ...