January 18, 2005
Similar papers 4
December 14, 2020
We consider the black hole information problem in an explicitly defined spacetime modelling black hole evaporation. Using this context we review basic aspects of the problem, with a particular effort to be unambiguous about subtle topics, for instance precisely what is meant by entropy in various circumstances. We then focus on questions of unitarity, and argue that commonly invoked semiclassical statements of long term, evaporation time, and Page time "unitarity" may all be ...
January 2, 2012
For more than 30 years the discovery that black holes radiate like black bodies of specific temperature has triggered a multitude of puzzling questions concerning their nature and the fate of information that goes down the black hole during its lifetime. The most tricky issue in what is known as information loss paradox is the apparent violation of unitarity during the formation/evaporation process of black holes. A new idea is proposed based on the combination of our knowled...
November 1, 2019
In approaches to quantum gravity, where smooth spacetime is an emergent approximation of a discrete Planckian fundamental structure, any standard effective field theoretical description will miss part of the degrees of freedom and thus break unitarity. Here we show that these expectations can be made precise in loop quantum cosmology. Concretely, even when loop quantum cosmology is unitary at the fundamental level, when microscopic degrees of freedom, irrelevant to low-energy...
March 30, 2024
An examination of the constraints of quantum gravity leads to a clear physical picture for how information about the initial state is transferred to the Hawking radiation that emerges from a black hole.
December 9, 2021
It has been shown that the quantum state of the graviton field outside a black hole horizon carries information about the internal state of the hole. We explain how this allows unitary evaporation: the final radiation state is a complex superposition which depends linearly on the initial black hole state. Under time reversal, the radiation state evolves back to the original black hole quantum state. Formulations of the information paradox on a fixed semiclassical geometry des...
April 6, 2013
In 1976 S. Hawking claimed that "Because part of the information about the state of the system is lost down the hole, the final situation is represented by a density matrix rather than a pure quantum state" (Verbatim from ref. 2). This was the starting point of the popular "black hole (BH) information paradox". In a series of papers, together with collaborators, we naturally interpreted BH quasi-normal modes (QNMs) in terms of quantum levels discussing a model of excited BH s...
July 23, 2004
The fate of classical information incident on a quantum black hole has been the subject of an ongoing controversy in theoretical physics, because a calculation within the framework of semi-classical curved-space quantum field theory appears to show that the incident information is irretrievably lost, in contradiction to time-honored principles such as time-reversibility and unitarity. Here, we show within this framework embedded in quantum communication theory that signaling ...
July 19, 2022
Thirty years ago, John Preskill concluded "that the information loss paradox may well presage a revolution in fundamental physics" and mused that "Conceivably, the puzzle of black hole evaporation portends a scientific revolution as sweeping as that that led to the formulation of quantum theory in the early 20th century." Many still agree with this assessment. On the other hand, it seems to me the "paradox" has little to do with the physical world but rather, at best, simply ...
February 10, 2004
Hawking's argument for information loss in black hole evaporation rests on the assumption of independent Hilbert spaces for the interior and exterior of a black hole. We argue that such independence cannot be established without incorporating strong gravitational effects that undermine locality and invalidate the use of quantum field theory in a semiclassical background geometry. These considerations should also play a role in a deeper understanding of horizon complementarity...
December 16, 2019
We found black hole evolution on a quantum-gravitational scattering framework with an aim to tackle the black hole information paradox. With this setup, various pieces of the system information are explicit from the start and unitary evolution is manifest throughout. The scattering amplitudes factorize into the perturbative part and nonperturbative part. The nonperturbative part is dominated by an instanton-type contribution, i.e., a black hole analogue of the Coleman-De Lucc...