April 13, 2005
We describe a technique which enables one to quickly compute an infinite number of toric geometries and their dual quiver gauge theories. The central object in this construction is a ``brane tiling,'' which is a collection of D5-branes ending on an NS5-brane wrapping a holomorphic curve that can be represented as a periodic tiling of the plane. This construction solves the longstanding problem of computing superpotentials for D-branes probing a singular non-compact toric Calabi-Yau manifold, and overcomes many difficulties which were encountered in previous work. The brane tilings give the largest class of N=1 quiver gauge theories yet studied. A central feature of this work is the relation of these tilings to dimer constructions previously studied in a variety of contexts. We do many examples of computations with dimers, which give new results as well as confirm previous computations. Using our methods we explicitly derive the moduli space of the entire Y^{p,q} family of quiver theories, verifying that they correspond to the appropriate geometries. Our results may be interpreted as a generalization of the McKay correspondence to non-compact 3-dimensional toric Calabi-Yau manifolds.
Similar papers 1
June 11, 2015
We initiate a systematic study of 2d (0,2) quiver gauge theories on the worldvolume of D1-branes probing singular toric Calabi-Yau 4-folds. We present an algorithm for efficiently calculating the classical mesonic moduli spaces of these theories, which correspond to the probed geometries. We also introduce a systematic procedure for constructing the gauge theories for arbitrary toric singularities by means of partial resolution, which translates to higgsing in the field theor...
June 12, 2007
We review and extend the progress made over the past few years in understanding the structure of toric quiver gauge theories; those which are induced on the world-volume of a stack of D3-branes placed at the tip of a toric Calabi-Yau cone, at an ``orbifold point'' in Kaehler moduli space. These provide an infinite class of four-dimensional N=1 superconformal field theories which may be studied in the context of the AdS/CFT correspondence. It is now understood that these gauge...
July 3, 2007
We introduce new techniques based on brane tilings to investigate D3-branes probing orientifolds of toric Calabi-Yau singularities. With these new tools, one can write down many orientifold models and derive the resulting low-energy gauge theories living on the D-branes. Using the set of ideas in this paper one recovers essentially all orientifolded theories known so far. Furthermore, new orientifolds of non-orbifold toric singularities are obtained. The possible applications...
May 24, 2005
We provide a general set of rules for extracting the data defining a quiver gauge theory from a given toric Calabi-Yau singularity. Our method combines information from the geometry and topology of Sasaki-Einstein manifolds, AdS/CFT, dimers, and brane tilings. We explain how the field content, quantum numbers, and superpotential of a superconformal gauge theory on D3-branes probing a toric Calabi-Yau singularity can be deduced. The infinite family of toric singularities with ...
October 6, 2015
We introduce brane brick models, a novel type of Type IIA brane configurations consisting of D4-branes ending on an NS5-brane. Brane brick models are T-dual to D1-branes over singular toric Calabi-Yau 4-folds. They fully encode the infinite class of 2d (generically) N=(0,2) gauge theories on the worldvolume of the D1-branes and streamline their connection to the probed geometries. For this purpose, we also introduce new combinatorial procedures for deriving the Calabi-Yau ass...
February 13, 2017
An infinite class of $4d$ $\mathcal{N}=1$ gauge theories can be engineered on the worldvolume of D3-branes probing toric Calabi-Yau 3-folds. This kind of setup has multiple applications, ranging from the gauge/gravity correspondence to local model building in string phenomenology. Brane tilings fully encode the gauge theories on the D3-branes and have substantially simplified their connection to the probed geometries. The purpose of this paper is to push the boundaries of com...
January 12, 2012
Reflexive polygons have attracted great interest both in mathematics and in physics. This paper discusses a new aspect of the existing study in the context of quiver gauge theories. These theories are 4d supersymmetric worldvolume theories of D3 branes with toric Calabi-Yau moduli spaces that are conveniently described with brane tilings. We find all 30 theories corresponding to the 16 reflexive polygons, some of the theories being toric (Seiberg) dual to each other. The meso...
March 23, 2005
We construct a new infinite family of N=1 quiver gauge theories which can be Higgsed to the Y^{p,q} quiver gauge theories. The dual geometries are toric Calabi-Yau cones for which we give the toric data. We also discuss the action of Seiberg duality on these quivers, and explore the different Seiberg dual theories. We describe the relationship of these theories to five dimensional gauge theories on (p,q) 5-branes. Using the toric data, we specify some of the properties of the...
September 15, 2009
We demonstrate a practical and efficient method for generating toric Calabi-Yau quiver theories, applicable to both D3 and M2 brane world-volume physics. A new analytic method is presented at low order parametres and an algorithm for the general case is developed which has polynomial complexity in the number of edges in the quiver. Using this algorithm, carefully implemented, we classify the quiver diagram and assign possible superpotentials for various small values of the nu...
June 11, 2012
We study a new duality which pairs 4d N=1 supersymmetric quiver gauge theories. They are represented by brane tilings and are worldvolume theories of D3 branes at Calabi-Yau 3-fold singularities. The new duality identifies theories which have the same combined mesonic and baryonic moduli space, otherwise called the master space. We obtain the associated Hilbert series which encodes both the generators and defining relations of the moduli space. We illustrate our findings with...