August 10, 2000
These four lectures, addressed to an audience of graduate students in experimental high energy physics, survey some of the basic concepts in string theory. The purpose is to convey a general sense of what string theory is and what it has achieved. Since the characteristic scale of string theory is expected to be close to the Planck scale, the structure of strings probably cannot be probed directly in accelerator experiments. The most accessible experimental implication of sup...
January 23, 2004
We combine I. background independent Loop Quantum Gravity (LQG) quantization techniques, II. the mathematically rigorous framework of Algebraic Quantum Field Theory (AQFT) and III. the theory of integrable systems resulting in the invariant Pohlmeyer Charges in order to set up the general representation theory (superselection theory) for the closed bosonic quantum string on flat target space. While we do not solve the, expectedly, rich representation theory completely, we pre...
July 20, 2011
These notes are based on lectures given by Michael Green during Part III of the Mathematics Tripos (the Certificate for Advanced Study in Mathematics) in the Spring of 2003. The course provided an introduction to string theory, focussing on the Bosonic string, but treating the superstring as well. A background in quantum field theory and general relativity is assumed. Some background in particle physics, group theory and conformal field theory is useful, though not essential....
February 8, 1994
We show that the $N=2$ superstrings may be viewed as a special class of the $N=4$ superstrings and demonstrate their equivalence. This allows us to realize all known string theories based on linear algebras and with $N<4$ supersymmetries as special choices of the vacua in the $N=4$ superstring.
January 4, 2023
This book provides an introduction to string field theory (SFT). String theory is usually formulated in the worldsheet formalism, which describes a single string (first-quantization). While this approach is intuitive and could be pushed far due to the exceptional properties of two-dimensional theories, it becomes cumbersome for some questions or even fails at a more fundamental level. These motivations have led to the development of SFT, a description of string theory using t...
March 26, 1997
We present a new geometrical approach to superstrings based on the geometrical theory of integration on supermanifolds. This approach provides an effective way to calculate multi-loop superstring amplitudes for arbitrary backgrounds. It makes possible to calculate amplitudes for the physical states defined as BRST cohomology classes using arbitrary representatives. Since the new formalism does not rely on the presence of primary representatives for the physical states it is p...
September 6, 2002
These ICTP Trieste lecture notes review the pure spinor approach to quantizing the superstring with manifest D=10 super-Poincare invariance. The first section discusses covariant quantization of the superparticle and gives a new proof of equivalence with the Brink-Schwarz superparticle. The second section discusses the superstring in a flat background and shows how to construct vertex operators and compute tree amplitudes in a manifestly super-Poincare covariant manner. And t...
July 9, 2024
A very quick introduction to the bosonic string, conformal field theory, the superstring and geometry. No background in quantum field theory is assumed and the omissions are vast. Based on four lectures at the 2024 Physical Mathematics of Quantum Field Theory Summer School.
June 13, 2010
We give the first construction of covariant coherent closed string states, which may be identified with fundamental cosmic strings. We outline the requirements for a string state to describe a cosmic string, and using DDF operators provide an explicit and simple map that relates three different descriptions: classical strings, lightcone gauge quantum states and covariant vertex operators. The naive construction leads to covariant vertex operators whose existence requires a li...
January 14, 2002
We show the Standard Model and SuperString Theories can be naturally based on a Quantum Computer foundation. The Standard Model of elementary particles can be viewed as defining a Quantum Computer Grammar and language. A Quantum Computer in a certain limit naturally forms a Superspace upon which Supersymmetry rotations can be defined - a Continuum Quantum Computer. Quantum high-level computer languages such as Quantum C and Quantum Assembly language are also discussed. In the...