July 18, 2022
In this invited review, we describe Hawking's information paradox and a recently proposed resolution of it. Explicit calculations demonstrate the existence of quantum hair on black holes, meaning that the quantum state of the external graviton field depends on the internal state of the black hole. Simple quantum mechanics then implies that Hawking radiation amplitudes depend on the internal state, resulting in a pure final radiation state that preserves unitarity and, importa...
June 27, 2004
This paper examines how black holes might compute in light of recent models of the black-hole final state. These models suggest that quantum information can escape from the black hole by a process akin to teleportation. They require a specific final state and restrictions on the interaction between the collapsing matter and the incoming Hawking radiation for quantum information to escape. This paper shows that for an arbitrary final state and for generic interactions between ...
March 6, 2017
We give a brief overview of the black hole information problem emphasizing fundamental issues and recent proposals for its resolution. The focus is on broad perspective and providing a guide to current literature rather than presenting full details. We concentrate on resolutions restoring naive unitarity.
September 5, 2009
The black hole information paradox is a very poorly understood problem. It is often believed that Hawking's argument is not precisely formulated, and a more careful accounting of naturally occurring quantum corrections will allow the radiation process to become unitary. We show that such is not the case, by proving that small corrections to the leading order Hawking computation cannot remove the entanglement between the radiation and the hole. We formulate Hawking's argument ...
May 19, 2006
The black hole information paradox apparently indicates the need for a fundamentally new ingredient in physics. The leading contender is nonlocality. Possible mechanisms for the nonlocality needed to restore unitarity to black hole evolution are investigated. Suggestions that such dynamics arises from ultra-planckian modes in Hawking's derivation are investigated and found not to be relevant, in a picture using smooth slices spanning the exterior and interior of the horizon. ...
June 27, 2009
We revisit in detail the paradox of black hole information loss due to Hawking radiation as tunneling. We compute the amount of information encoded in correlations among Hawking radiations for a variety of black holes, including the Schwarzchild black hole, the Reissner-Nordstr\"{o}m black hole, the Kerr black hole, and the Kerr-Newman black hole. The special case of tunneling through a quantum horizon is also considered. Within a phenomenological treatment based on the accep...
February 10, 2004
Hawking's argument for information loss in black hole evaporation rests on the assumption of independent Hilbert spaces for the interior and exterior of a black hole. We argue that such independence cannot be established without incorporating strong gravitational effects that undermine locality and invalidate the use of quantum field theory in a semiclassical background geometry. These considerations should also play a role in a deeper understanding of horizon complementarity...
May 28, 2013
In both classical and quantum world, information cannot appear or disappear. This fundamental principle, however, is questioned for a black hole, by the acclaimed "information loss paradox". Based on the conservation laws of energy, charge, and angular momentum, we recently show the total information encoded in the correlations among Hawking radiations equals exactly to the same amount previously considered lost, assuming the non-thermal spectrum of Parikh and Wilczek. Thus t...
December 14, 2020
We consider the black hole information problem in an explicitly defined spacetime modelling black hole evaporation. Using this context we review basic aspects of the problem, with a particular effort to be unambiguous about subtle topics, for instance precisely what is meant by entropy in various circumstances. We then focus on questions of unitarity, and argue that commonly invoked semiclassical statements of long term, evaporation time, and Page time "unitarity" may all be ...
August 23, 2016
A simple model of a blackhole evaporation without information loss is given. In this model, the blackhole is \textit{not} in a specific mass eigenstate as it evaporates but rather, is in a superposition of various mass eigenstates and is entangled with the radiation. For astrophysical blackhole, the mass distribution is sharply peak about its average value with a vanishingly small standard deviation, which is consistent with our intuition of a classical object. It is then sho...