May 3, 2006
In our previous work, we proposed a mathematical framework for PT-symmetric quantum theory, and in particular constructed a Krein space in which PT-symmetric operators would naturally act. In this work, we explore and discuss various general consequences and aspects of the theory defined in the Krein space, not only spectral property and PT symmetry breaking but also several issues, crucial for the theory to be physically acceptable, such as time evolution of state vectors, probability interpretation, uncertainty relation, classical-quantum correspondence, completeness, existence of a basis, and so on. In particular, we show that for a given real classical system we can always construct the corresponding PT-symmetric quantum system, which indicates that PT-symmetric theory in the Krein space is another quantization scheme rather than a generalization of the traditional Hermitian one in the Hilbert space. We propose a postulate for an operator to be a physical observable in the framework.
Similar papers 1
March 13, 2006
We provide a mathematical framework for PT-symmetric quantum theory, which is applicable irrespective of whether a system is defined on R or a complex contour, whether PT symmetry is unbroken, and so on. The linear space in which PT-symmetric quantum theory is naturally defined is a Krein space constructed by introducing an indefinite metric into a Hilbert space composed of square integrable complex functions in a complex contour. We show that in this Krein space every PT-sym...
June 21, 2006
Emphasizing the physical constraints on the formulation of a quantum theory based on the standard measurement axiom and the Schroedinger equation, we comment on some conceptual issues arising in the formulation of PT-symmetric quantum mechanics. In particular, we elaborate on the requirements of the boundedness of the metric operator and the diagonalizability of the Hamiltonian. We also provide an accessible account of a Krein-space derivation of the CPT-inner product that wa...
October 25, 2016
We show in the present paper that pseudo-Hermitian Hamiltonian systems with even PT-symmetry admit a degeneracy structure. This kind of degeneracy is expected traditionally in the odd PT-symmetric systems which is appropriate to the fermions as shown by Jones-Smith and Mathur [1] who extended PT-symmetric quantum mechanics to the case of odd time-reversal symmetry. We establish that the pseudo-Hermitian Hamiltonians with even PT-symmetry admit a degeneracy structure if the op...
July 27, 2004
The physical condition that the expectation values of physical observables are real quantities is used to give a precise formulation of PT-symmetric quantum mechanics. A mathematically rigorous proof is given to establish the physical equivalence of PT-symmetric and conventional quantum mechanics. The results reported in this paper apply to arbitrary PT-symmetric Hamiltonians with a real and discrete spectrum. They hold regardless of whether the boundary conditions defining t...
August 27, 2010
We survey some of the main conceptual developments in the study of PT-symmetric and pseudo-Hermitian Hamiltonian operators that have taken place during the past ten years or so. We offer a precise mathematical description of a quantum system and its representations that allows us to describe the idea of unitarization of a quantum system by modifying the inner product of the Hilbert space. We discuss the role and importance of the quantum-to-classical correspondence principle ...
February 5, 2022
PT-symmetric quantum theory was originally proposed with the aim of extending standard quantum theory by relaxing the Hermiticity constraint on Hamiltonians. However, no such extension has been formulated that consistently describes states, transformations, measurements and composition, which is a requirement for any physical theory. We aim to answer the question of whether a consistent physical theory with PT-symmetric observables extends standard quantum theory. We answer t...
January 11, 2005
In most introductory courses on quantum mechanics one is taught that the Hamiltonian operator must be Hermitian in order that the energy levels be real and that the theory be unitary (probability conserving). To express the Hermiticity of a Hamiltonian, one writes $H=H^\dagger$, where the symbol $\dagger$ denotes the usual Dirac Hermitian conjugation; that is, transpose and complex conjugate. In the past few years it has been recognized that the requirement of Hermiticity, wh...
February 3, 2004
The Hamiltonian H specifies the energy levels and the time evolution of a quantum theory. It is an axiom of quantum mechanics that H be Hermitian because Hermiticity guarantees that the energy spectrum is real and that the time evolution is unitary (probability preserving). This paper investigates an alternative way to construct quantum theories in which the conventional requirement of Hermiticity (combined transpose and complex conjugate) is replaced by the more physically t...
December 30, 2013
The author discusses a different kind of Hermitian quantum mechanics, called $J$-Hermitian quantum mechanics. He shows that $PT$-symmetric quantum mechanics is indeed $J$-Hermitian quantum mechanics, and that time evolution (in the Krein space of states) is unitary if and only if Hamiltonian is $J$-Hermitian (or equivalently $PT$-symmetric). An issue with unitarity comes up when time evolution is considered in the Hilbert space of states rather than in the Krein space of stat...
February 5, 2014
We propose giving the mathematical concept of the pseudospectrum a central role in quantum mechanics with non-Hermitian operators. We relate pseudospectral properties to quasi-Hermiticity, similarity to self-adjoint operators, and basis properties of eigenfunctions. The abstract results are illustrated by unexpected wild properties of operators familiar from PT-symmetric quantum mechanics.